Abstract

With the decrease in availability of common supplementary cementitious materials (SCMs) such as fly ash in Europe, the search for appropriate SCMs should be dealt with locally. A combination of abundant low-grade calcined clay and limestone powder has proven relatively inexpensive to produce while maintaining satisfying performance compared to existing cements. In this study, ternary cement mixtures containing 45 % ordinary portland cement and 55 % SCMs - limestone powder with either low-grade calcined clay or high-volume fly ash (HVFA), were compared in terms of freeze–thaw resistance, water permeability, carbonation, and compressive strength of concrete according to European standards. The main aim of the study was the evaluation of potential durability challenges of local limestone and calcined clay (LC3) binder and the possibility of its utilization as an ecological alternative to HVFA blends fitted for general application. The results suggest a similar performance of both binders in terms of compressive strength, carbonation, and freezing and thawing resistance, though the water penetration resistance seems to increase with the LC3 binder. The reduced water-permeable porosity of this binder, measured by mercury porosimetry, could influence the diffusivity of concrete, especially after carbonation.

References

1.
European Parliament
Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast)
,
Official Journal of the European Union L
153
(
2010
):
13
35
.
2.
Kumar Mehta
P.
and
Monteiro
P. J. M.
,
Concrete: Microstructure, Properties, and Materials
, 3rd ed. (
New York
:
McGraw-Hill
,
2006
).
3.
Hradil
P.
,
Toratti
T.
,
Vesikari
E.
,
Ferreira
M.
, and
Häkkinen
T.
, “
Durability Considerations of Refurbished External Walls
,”
Construction and Building Materials
53
(February
2014
):
162
172
, https://doi.org/10.1016/j.conbuildmat.2013.11.081
4.
Scrivener
K. L.
,
Horvath
A.
,
Shah
S.
,
John
V. M.
,
Irassar
E. F.
,
Thomas
M.
,
Gartner
E. M.
, et al.,
Eco-efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry
(
Nairobi, Kenya
:
United Nations Environment Programme
,
2018
), http://web.archive.org/web/20230404071840/https://wedocs.unep.org/handle/20.500.11822/25281;jsessionid=03D698D61D1DAD7ED52156D078926445
5.
Proske
T.
,
Hainer
S.
,
Rezvani
M.
, and
Graubner
C.-A.
, “
Eco-friendly Concretes with Reduced Water and Cement Content – Mix Design Principles and Application in Practice
,”
Construction and Building Materials
67
, Part C (September
2014
):
413
421
, https://doi.org/10.1016/j.conbuildmat.2013.12.066
6.
Ram
K.
,
Serdar
M.
,
Londono-Zuluaga
D.
, and
Scrivener
K.
, “
Does Carbon Footprint Reduction Impair Mechanical Properties and Service Life of Concrete?
Materials and Structures
56
, no. 
1
(
2023
): 6, https://doi.org/10.1617/s11527-022-02090-9
7.
Robalo
K.
,
Soldado
E.
,
Costa
H.
,
do Carmo
R.
,
Alves
H.
, and
Júlio
E.
, “
Efficiency of Cement Content and of Compactness on Mechanical Performance of Low Cement Concrete Designed with Packing Optimization
,”
Construction and Building Materials
266
, Part B (January 2021): 121077, https://doi.org/10.1016/j.conbuildmat.2020.121077
8.
Londero
C.
,
Klein
N. S.
, and
Mazer
W.
, “
Study of Low-Cement Concrete Mix-Design through Particle Packing Techniques
,”
Journal of Building Engineering
42
(October
2021
): 103071, https://doi.org/10.1016/j.jobe.2021.103071
9.
World Business Council for Sustainable Development
Cement Industry Energy and CO2 Performance: Getting the Numbers Right (GNR)
(
Geneva, Switzerland
:
World Business Council for Sustainable Development
,
2016
), http://web.archive.org/web/20230404074841/https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/Resources/Cement-Industry-Energy-and-CO2-Performance
10.
Cement - Part 5: Portland-Composite Cement CEM II/C-M and Composite Cement CEM VI
, EN 197-5:2021 (Brussels, Belgium:
European Committee for Standardization
,
2021
).
11.
Bijen
J.
, “
Benefits of Slag and Fly Ash
,”
Construction and Building Materials
10
, no. 
5
(July
1996
):
309
314
, https://doi.org/10.1016/0950-0618(95)00014-3
12.
European Commission Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal, COM/2019/640 final (2019).
13.
Bekaert
F.
,
van Hoey
M.
,
Hagenbruch
T.
,
Vercammen
S.
,
Kastl
E.
,
Zeumer
B.
, and
Mareels
S.
,
Metals and Mining Practice: The Future of the European Steel Industry
(
New York
:
McKinsey & Company
,
2021
).
14.
Global Cement and Concrete Association
Concrete Future: The GCCA 2050 Cement and Concrete Industry Roadmap to Net Zero Concrete
(
London, UK
:
Global Cement and Concrete Association
,
2021
).
15.
Scrivener
K.
,
Martirena
F.
,
Bishnoi
S.
, and
Maity
S.
, “
Calcined Clay Limestone Cements (LC3)
,”
Cement and Concrete Research
114
(December
2018
):
49
56
, https://doi.org/10.1016/j.cemconres.2017.08.017
16.
Zunino
F.
and
Alberto
F.
, “
Limestone Calcined Clay Cements (LC3): Raw Material Processing, Sulfate Balance and Hydration Kinetics
” (PhD diss., École Polytechnique Fédérale de Lausanne,
2020
).
17.
Hanein
T.
,
Thienel
K.-C.
,
Zunino
F.
,
Marsh
A. T. M.
,
Maier
M.
,
Wang
B.
,
Canut
M.
, et al., “
Clay Calcination Technology: State-of-the-Art Review by the RILEM TC 282-CCL
,”
Materials and Structures
55
, no. 
1
(January
2022
): 3, https://doi.org/10.1617/s11527-021-01807-6
18.
Yu
J.
,
Wu
H.-L.
,
Mishra
D. K.
,
Li
G.
, and
Leung
C. K. Y.
, “
Compressive Strength and Environmental Impact of Sustainable Blended Cement with High-Dosage Limestone and Calcined Clay (LC2)
,”
Journal of Cleaner Production
278
(January
2021
): 123616, https://doi.org/10.1016/j.jclepro.2020.123616
19.
Pillai
R. G.
,
Gettu
R.
,
Santhanam
M.
,
Rengaraju
S.
,
Dhandapani
Y.
,
Rathnarajan
S.
, and
Basavaraj
A. S.
, “
Service Life and Life Cycle Assessment of Reinforced Concrete Systems with Limestone Calcined Clay Cement (LC3)
,”
Cement and Concrete Research
118
(April
2019
):
111
119
, https://doi.org/10.1016/j.cemconres.2018.11.019
20.
Dhandapani
Y.
,
Sakthivel
T.
,
Santhanam
M.
,
Gettu
R.
, and
Pillai
R. G.
, “
Mechanical Properties and Durability Performance of Concretes with Limestone Calcined Clay Cement (LC3)
,”
Cement and Concrete Research
107
(May
2018
):
136
151
, https://doi.org/10.1016/j.cemconres.2018.02.005
21.
Habert
G.
,
Choupay
N.
,
Montel
J. M.
,
Guillaume
D.
, and
Escadeillas
G.
, “
Effects of the Secondary Minerals of the Natural Pozzolans on Their Pozzolanic Activity
,”
Cement and Concrete Research
38
, no. 
7
(July
2008
):
963
975
, https://doi.org/10.1016/j.cemconres.2008.02.005
22.
Fernandez
R.
,
Martirena
F.
, and
Scrivener
K. L.
, “
The Origin of the Pozzolanic Activity of Calcined Clay Minerals: A Comparison between Kaolinite, Illite and Montmorillonite
,”
Cement and Concrete Research
41
, no. 
1
(January
2011
):
113
122
, https://doi.org/10.1016/j.cemconres.2010.09.013
23.
Avet
F.
and
Scrivener
K.
, “
Investigation of the Calcined Kaolinite Content on the Hydration of Limestone Calcined Clay Cement (LC3)
,”
Cement and Concrete Research
107
(May
2018
):
124
135
, https://doi.org/10.1016/j.cemconres.2018.02.016
24.
Zolfagharnasab
A.
,
Ramezanianpour
A. A.
, and
Bahman-Zadeh
F.
, “
Investigating the Potential of Low-Grade Calcined Clays to Produce Durable LC3 Binders against Chloride Ions Attack
,”
Construction and Building Materials
303
(October
2021
): 124541, https://doi.org/10.1016/j.conbuildmat.2021.124541
25.
Flegar
M.
,
Serdar
M.
,
Londono-Zuluaga
D.
, and
Scrivener
K.
, “
Regional Waste Streams as Potential Raw Materials for Immediate Implementation in Cement Production
,”
Materials
13
, no. 
23
(December
2020
): 5456, https://doi.org/10.3390/ma13235456
26.
De Weerdt
K.
,
Kjellsen
K. O.
,
Sellevold
E.
, and
Justnes
H.
, “
Synergy between Fly Ash and Limestone Powder in Ternary Cements
,”
Cement and Concrete Composites
33
, no. 
1
(January
2011
):
30
38
, https://doi.org/10.1016/j.cemconcomp.2010.09.006
27.
Antoni
M.
,
Rossen
J.
,
Martirena
F.
, and
Scrivener
K.
, “
Cement Substitution by a Combination of Metakaolin and Limestone
,”
Cement and Concrete Research
42
, no. 
12
(December
2012
):
1579
1589
, https://doi.org/10.1016/j.cemconres.2012.09.006
28.
Yilmaz
B.
and
Olgun
A.
, “
Studies on Cement and Mortar Containing Low-Calcium Fly Ash, Limestone, and Dolomitic Limestone
,”
Cement and Concrete Composites
30
, no. 
3
(March
2008
):
194
201
, https://doi.org/10.1016/j.cemconcomp.2007.07.002
29.
Ram
K.
,
Serdar
M.
,
Londono-Zuluaga
D.
, and
Scrivener
K.
, “
The Effect of Pore Microstructure on Strength and Chloride Ingress in Blended Cement Based on Low Kaolin Clay
,”
Case Studies in Construction Materials
17
(December
2022
): e01242, https://doi.org/10.1016/j.cscm.2022.e01242
30.
Shah
V.
,
Parashar
A.
,
Mishra
G.
,
Medepalli
S.
,
Krishnan
S.
, and
Bishnoi
S.
, “
Influence of Cement Replacement by Limestone Calcined Clay Pozzolan on the Engineering Properties of Mortar and Concrete
,”
Advances in Cement Research
32
, no. 
3
(March
2020
):
101
111
, https://doi.org/10.1680/jadcr.18.00073
31.
Dixit
A.
,
Du
H.
,
Dang
J.
, and
Pang
S. D.
, “
Quaternary Blended Limestone-Calcined Clay Cement Concrete Incorporating Fly Ash
,”
Cement and Concrete Composites
123
(October
2021
): 104174, https://doi.org/10.1016/j.cemconcomp.2021.104174
32.
Skibsted
J.
and
Snellings
R.
, “
Reactivity of Supplementary Cementitious Materials (SCMs) in Cement Blends
,”
Cement and Concrete Research
124
(October
2019
): 105799, https://doi.org/10.1016/j.cemconres.2019.105799
33.
Shah
V.
,
Parashar
A.
, and
Scott
A.
, “
Understanding the Importance of Carbonates on the Performance of Portland Metakaolin Cement
,”
Construction and Building Materials
319
(February
2022
): 126155, https://doi.org/10.1016/j.conbuildmat.2021.126155
34.
Khunthongkeaw
J.
,
Tangtermsirikul
S.
, and
Leelawat
T.
, “
A Study on Carbonation Depth Prediction for Fly Ash Concrete
,”
Construction and Building Materials
20
, no. 
9
(November
2006
):
744
753
, https://doi.org/10.1016/j.conbuildmat.2005.01.052
35.
Shah
V.
,
Scrivener
K.
,
Bhattacharjee
B.
, and
Bishnoi
S.
, “
Changes in Microstructure Characteristics of Cement Paste on Carbonation
,”
Cement and Concrete Research
109
(July
2018
):
184
197
, https://doi.org/10.1016/j.cemconres.2018.04.016
36.
Naik
T. R.
,
Singh
S. S.
, and
Hossain
M. M.
, “
Properties of High Performance Concrete Systems Incorporating Large Amounts of High-Lime Fly Ash
,”
Construction and Building Materials
9
, no. 
4
(August
1995
):
195
204
, https://doi.org/10.1016/0950-0618(95)00009-5
37.
Malhotra
V. M.
, “
Durability of Concrete Incorporating High-Volume of Low-Calcium (ASTM Class F) Fly Ash
,”
Cement and Concrete Composites
12
, no. 
4
(
1990
):
271
277
, https://doi.org/10.1016/0958-9465(90)90006-J
38.
Van den Heede
P.
,
Furniere
J.
, and
De Belie
N.
, “
Influence of Air Entraining Agents on Deicing Salt Scaling Resistance and Transport Properties of High-Volume Fly Ash Concrete
,”
Cement and Concrete Composites
37
(March
2013
):
293
303
, https://doi.org/10.1016/j.cemconcomp.2013.01.005
39.
Solid Mineral Fuels — Major and Minor Elements in Coal Ash and Coke Ash — Wavelength Dispersive X-ray Fluorescence Spectrometric Method
, ISO 13605:2018 (Geneva, Switzerland:
International Organization for Standardization
,
2018
).
40.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (Superseded)
, ASTM C618-19 (West Conshohocken, PA:
ASTM International
, approved January 1,
2019
), https://doi.org/10.1520/C0618
41.
Scrivener
K.
,
Snellings
R.
, and
Lothenbach
B.
, eds.,
A Practical Guide to Microstructural Analysis of Cementitious Materials
, 1st ed. (
Boca Raton
:
CRC Press
,
2016
), https://doi.org/10.1201/b19074
42.
Lu
Z. C.
,
Haist
M.
,
Ivanov
D.
,
Jakob
C.
,
Jansen
D.
,
Leinitz
S.
,
Link
J.
, et al., “
Characterization Data of Reference Cement CEM I 42.5 R Used for Priority Program DFG SPP 2005 ‘Opus Fluidum Futurum - Rheology of Reactive, Multiscale, Multiphase Construction Materials
,’”
Data in Brief
27
(December
2019
): 104699, https://doi.org/10.1016/j.dib.2019.104699
43.
Concrete - Part 1: Specification, Performance, Production and Conformity
, EN 206-1:2021 (Brussels, Belgium:
European Committee for Standardization
,
2021
).
44.
Testing Hardened Concrete - Part 3: Compressive Strength of Test Specimens
(Withdrawn), EN 12390-3:2019 (Brussels, Belgium:
European Committee for Standardization
,
2019
).
45.
Testing Hardened Concrete - Part 8: Depth of Penetration of Water under Pressure
, EN 12390-8:2019 (Brussels, Belgium:
European Committee for Standardization
,
2019
).
46.
Testing Hardened Concrete - Part 12: Determination of the Carbonation Resistance of Concrete - Accelerated Carbonation Method
, EN 12390-12:2020 (Brussels, Belgium:
European Committee for Standardization
,
2020
).
47.
Testing the Freeze-Thaw Resistance of Concrete - Internal Structural Damage
, CEN/TR 15177:2006 (Brussels, Belgium:
European Committee for Standardization
,
2006
).
48.
Mikulić
D.
,
Gabrijel
I.
,
Trubić
A. H.
, and
Uzelac
S.
, “
Analysis of Voids in Concrete - Interlaboratory Testing
” (in Croatian),
Građevinar
59
, no. 
5
(June
2007
):
387
393
, https://hrcak.srce.hr/16451
49.
Washburn
E. W.
, “
Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material
,”
Proceedings of the National Academy of Sciences of the United States of America
7
, no. 
4
(April
1921
):
115
116
, https://doi.org/10.1073/pnas.7.4.115
50.
Dhandapani
Y.
and
Santhanam
M.
, “
Investigation on the Microstructure-Related Characteristics to Elucidate Performance of Composite Cement with Limestone-Calcined Clay Combination
,”
Cement and Concrete Research
129
(March
2020
): 105959, https://doi.org/10.1016/j.cemconres.2019.105959
51.
Ashraf
W.
, “
Carbonation of Cement-Based Materials: Challenges and Opportunities
,”
Construction and Building Materials
120
(September
2016
):
558
570
, https://doi.org/10.1016/j.conbuildmat.2016.05.080
52.
Aramburo
C. H.
,
Pedrajas
C.
, and
Talero
R.
, “
Portland Cements with High Content of Calcined Clay: Mechanical Strength Behaviour and Sulfate Durability
,”
Materials
13
, no. 
18
(September
2020
): 4206, https://doi.org/10.3390/ma13184206
53.
Scrivener
K. L.
,
Lothenbach
B.
,
De Belie
N.
,
Gruyaert
E.
,
Skibsted
J.
,
Snellings
R.
, and
Vollpracht
A.
, “
TC 238-SCM: Hydration and Microstructure of Concrete with SCMs: State of the Art on Methods to Determine Degree of Reaction of SCMs
,”
Materials and Structures
48
, no. 
4
(April
2015
):
835
862
, https://doi.org/10.1617/s11527-015-0527-4
54.
Ozer
B.
and
Ozkul
M. H.
, “
The Influence of Initial Water Curing on the Strength Development of Ordinary Portland and Pozzolanic Cement Concretes
,”
Cement and Concrete Research
34
, no. 
1
(January
2004
):
13
18
, https://doi.org/10.1016/S0008-8846(03)00185-6
55.
Skazlić
M.
and
Bjegović
D.
, “
Structure and Properties of High Strength Concrete Varieties
” (in Croatian),
Građevinar
58
, no. 
4
(April
2006
):
289
299
.
56.
Naik
T. R.
,
Singh
S. S.
, and
Hossain
M. M.
, “
Permeability of Concrete Containing Large Amounts of Fly Ash
,”
Cement and Concrete Research
24
, no. 
5
(
1994
):
913
922
, https://doi.org/10.1016/0008-8846(94)90011-6
57.
Gong
J.
and
Zhang
W.
, “
The Effects of Pozzolanic Powder on Foam Concrete Pore Structure and Frost Resistance
,”
Construction and Building Materials
208
(May
2019
):
135
143
, https://doi.org/10.1016/j.conbuildmat.2019.02.021
58.
Łaźniewska-Piekarczyk
B.
and
Piekarczyk
A.
, “
The Problem of the Equivalent Time to Start the Internal Frost Resistance Test on Self-Compacting Concrete with Supplementary Cementitious Materials
,”
Journal of Building Engineering
32
(November
2020
): 101503, https://doi.org/10.1016/j.jobe.2020.101503
59.
Al-Assadi
G.
,
Casati
M. J.
,
Gálvez
J. C.
,
Fernández
J.
, and
Aparicio
S.
, “
The Influence of the Curing Conditions of Concrete on Durability after Freeze-Thaw Accelerated Testing
,”
Materiales de Construcción
65
, no. 
320
(
2015
): e067, https://doi.org/10.3989/mc.2015.06514
60.
Gorzelańczyk
T.
, “
Acoustically Assessed Influence of Air Pore Structure on Failure of Self-Compacting Concretes under Compression
,”
Journal of Civil Engineering and Management
18
, no. 
1
(February
2012
):
60
70
, https://doi.org/10.3846/13923730.2011.652982
61.
Shah
V.
and
Bishnoi
S.
, “
Analysis of Pore Structure Characteristics of Carbonated Low-Clinker Cements
,”
Transport in Porous Media
124
, no. 
3
(September
2018
):
861
881
, https://doi.org/10.1007/s11242-018-1101-7
62.
Dhandapani
Y.
and
Santhanam
M.
, “
Assessment of Pore Structure Evolution in the Limestone Calcined Clay Cementitious System and Its Implications for Performance
,”
Cement and Concrete Composites
84
(November
2017
):
36
47
, https://doi.org/10.1016/j.cemconcomp.2017.08.012
63.
Pham
S. T.
and
Prince
W.
, “
Effects of Carbonation on the Microstructure of Cement Materials: Influence of Measuring Methods and of Types of Cement
,”
International Journal of Concrete Structures and Materials
8
, no. 
4
(December
2014
):
327
333
, https://doi.org/10.1007/s40069-014-0079-y
64.
von Greve-Dierfeld
S.
,
Lothenbach
B.
,
Vollpracht
A.
,
Huet
B.
,
Andrade
C.
,
Medina
C.
,
Thiel
C.
, et al., “
Understanding the Carbonation of Concrete with Supplementary Cementitious Materials: A Critical Review by RILEM TC 281-CCC
,”
Materials and Structures
53
, no. 
6
(
2020
): 136, https://doi.org/10.1617/s11527-020-01558-w
65.
Morandeau
A.
,
Thiéry
M.
, and
Dangla
P.
, “
Impact of Accelerated Carbonation on OPC Cement Paste Blended with Fly Ash
,”
Cement and Concrete Research
67
(January
2015
):
226
236
, https://doi.org/10.1016/j.cemconres.2014.10.003
66.
Chindaprasirt
P.
and
Rukzon
S.
, “
Pore Structure Changes of Blended Cement Pastes Containing Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash Caused by Carbonation
,”
Journal of Materials in Civil Engineering
21
, no. 
11
(November
2009
):
666
671
, https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(666)
67.
Rathnarajan
S.
,
Dhanya
B. S.
,
Pillai
R. G.
,
Gettu
R.
, and
Santhanam
M.
, “
Carbonation Model for Concretes with Fly Ash, Slag, and Limestone Calcined Clay - Using Accelerated and Five - Year Natural Exposure Data
,”
Cement and Concrete Composites
126
(February
2022
): 104329, https://doi.org/10.1016/j.cemconcomp.2021.104329
68.
Cordoba
G.
,
Sposito
R.
,
Köberl
M.
,
Zito
S.
,
Beuntner
N.
,
Tironi
A.
,
Thienel
K.-C.
, and
Irassar
E. F.
, “
Chloride Migration and Long-Term Natural Carbonation on Concretes with Calcined Clays: A Study of Calcined Clays in Argentina
,”
Case Studies in Construction Materials
17
(December
2022
): e01190, https://doi.org/10.1016/j.cscm.2022.e01190
69.
Kumar
R.
and
Bhattacharjee
B.
, “
Porosity, Pore Size Distribution and In Situ Strength of Concrete
,”
Cement and Concrete Research
33
, no. 
1
(January
2003
):
155
164
, https://doi.org/10.1016/S0008-8846(02)00942-0
This content is only available via PDF.
You do not currently have access to this content.