Abstract

Concrete structures immersed in sea water suffer severe corrosion, and the application of nanomaterials to concrete presents an innovative approach to enhancing both its physical and mechanical properties. In this paper, the effects of combined admixtures of graphene oxide nanoplatelets (GONPs) and ground granulated blast furnace slag (GGBFS) on concrete were studied, and mechanical and physical tests were performed. It was known that the GGBFS admixture improves the durability of concrete, but in concrete samples containing both GONPs and GGBFS, the compressive strength increased by nearly 43 % and 46 % at 28 and 90 days of curing, respectively, compared with ordinary portland cement (OPC) concretes. The same admixing regime caused an increase in flexural strength of up to 58 % and 59 % during the same time spans. This was accompanied with a significant reduction in chloride permeability, which was appraised by a 64 % drop in electrical conductivity measurements. The GONPs additive, even at the very low concentrations, accelerated the formation of calcium silicate hydrate, thereby enhancing the mechanical and flexural strengths that directly affect the durability and water and chloride absorption. The overall durability and rebar corrosion resistance that were shown through electrochemical tests are consequences of the combined improvements in the physico-mechanical concrete properties. OPC concrete is thus both stronger and significantly more chloride ion resistant with additions of GONPs in the parts per million range and by replacing it with 50 percent by weight GGBFS. The enhanced pozzolanic reactions in concrete help to fill the porosity and significantly contribute to the curtailment mechanism.

References

1.
Hosan
A.
and
Shaikh
F. U. A.
, “
Compressive Strength Development and Durability Properties of High Volume Slag and Slag-Fly Ash Blended Concretes Containing Nano-CacO3
,”
Journal of Materials Research and Technology
10
(January–February
2021
):
1310
1322
, https://doi.org/10.1016/j.jmrt.2021.01.001
2.
Damtoft
J. S.
,
Lukasik
J.
,
Herfort
D.
,
Sorrentino
D.
, and
Gartner
E. M.
, “
Sustainable Development and Climate Change Initiatives
,”
Cement and Concrete Research
38
, no. 
2
(February
2008
):
115
127
, https://doi.org/10.1016/j.cemconres.2007.09.008
3.
Benhelal
E.
,
Zahedi
G.
,
Shamsaei
E.
, and
Bahadori
A.
, “
Global Strategies and Potentials to Curb CO2 Emissions in Cement Industry
,”
Journal of Cleaner Production
51
(July
2013
):
142
161
, https://doi.org/10.1016/j.jclepro.2012.10.049
4.
Elchalakani
M.
,
Aly
T.
, and
Abu-Aisheh
E.
, “
Sustainable Concrete with High Volume GGBFS to Build Masdar City in the UAE
,”
Case Studies in Construction Materials
1
(
2014
):
10
24
, https://doi.org/10.1016/j.cscm.2013.11.001
5.
Mehta
P. K.
, “
Reducing the Environmental Impact of Concrete
,”
ACI Concrete International
23
, no. 
10
(October
2001
):
61
66
, https://web.archive.org/web/20230321161633/http://ecosmartconcrete.com/docs/trmehta01.pdf
6.
Li
J.
,
Tharakan
P.
,
Macdonald
D.
, and
Liang
X.
, “
Technological, Economic and Financial Prospects of Carbon Dioxide Capture in the Cement Industry
,”
Energy Policy
61
(October
2013
):
1377
1387
, https://doi.org/10.1016/j.enpol.2013.05.082
7.
Martins
A. C. P.
,
de Carvalho
J. M. F.
,
Costa
L. C. B.
,
Andrade
H. D.
,
de Melo
T. V.
,
Ribeiro
J. C. L.
,
Pedroti
L. G.
, and
Peixoto
R. A. F.
, “
Steel Slags in Cement-Based Composites: An Ultimate Review on Characterization, Applications and Performance
,”
Construction and Building Materials
291
(July
2021
): 123265, https://doi.org/10.1016/j.conbuildmat.2021.123265
8.
Qu
F.
,
Li
W.
,
Dong
W.
,
Tam
V. W. Y.
, and
Yu
T.
, “
Durability Deterioration of Concrete under Marine Environment from Material to Structure: A Critical Review
,”
Journal of Building Engineering
35
(March
2021
): 102074, https://doi.org/10.1016/j.jobe.2020.102074
9.
Khan
M. U.
,
Ahmad
S.
, and
Al-Gahtani
H. J.
, “
Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time
,”
International Journal of Corrosion
2017
(
2017
): 5819202, https://doi.org/10.1155/2017/5819202
10.
Shi
C.
and
Qian
J.
, “
High Performance Cementing Materials from Industrial Slags – A Review
,”
Resources, Conservation and Recycling
29
, no. 
3
(June
2000
):
195
207
, https://doi.org/10.1016/S0921-3449(99)00060-9
11.
Ahmed
S. M.
and
Kamal
I.
, “
Electrical Resistivity and Compressive Strength of Cement Mortar Based on Green Magnetite Nanoparticles and Wastes from Steel Industry
,”
Case Studies in Construction Materials
17
(December
2022
): e01712, https://doi.org/10.1016/j.cscm.2022.e01712
12.
Ramírez
C. P.
,
del Río Merinoa
M.
, and
Arrebola
C. V.
,
Barriguete
A. V.
, and
Benito
P A.
, “
Durability of Cement Mortars Reinforced with Insulation Waste from the Construction Industry,”
Journal of Building Engineering
40
(August
2021
): 102719, https://doi.org/10.1016/j.jobe.2021.102719
13.
Yousef
S.
,
Kalpokaitė-Dičkuvienė
R.
,
Baltušnikas
A.
,
Pitak
I.
, and
Lukošiūtė
S. I.
, “
A New Strategy for Functionalization of Char Derived from Pyrolysis of Textile Waste and Its Application as Hybrid Fillers (CNTs/Char and Graphene/Char) in Cement Industry
,”
Journal of Cleaner Production
314
(September
2021
): 128058, https://doi.org/10.1016/j.jclepro.2021.128058
14.
Hashem
F. S.
,
Razek
T. A.
, and
Mashout
H. A.
, “
Rubber and Plastic Wastes as Alternative Refused Fuel in Cement Industry
,”
Construction and Building Materials
212
(July
2019
):
275
282
, https://doi.org/10.1016/j.conbuildmat.2019.03.316
15.
Borinaga-Treviño
R.
,
Cuadrado
J.
,
Canales
J.
, and
Rojí
E.
, “
Lime Mud Waste from the Paper Industry as a Partial Replacement of Cement in Mortars Used on Radiant Floor Heating Systems
,”
Journal of Building Engineering
41
(September
2021
): 102408, https://doi.org/10.1016/j.jobe.2021.102408
16.
Wang
H.
,
Hou
P.
,
Li
Q.
,
Adu-Amankwah
S.
,
Chen
H.
,
Xie
N.
,
Zhao
P.
,
Huang
Y.
,
Wang
S.
, and
Cheng
X.
, “
Synergistic Effects of Supplementary Cementitious Materials in Limestone and Calcined Clay-Replaced Slag Cement
,”
Construction and Building Materials
282
(May
2021
): 122648, https://doi.org/10.1016/j.conbuildmat.2021.122648
17.
Xiao
B.
,
Wen
Z.
,
Miao
S.
, and
Gao
Q.
, “
Utilization of Steel Slag for Cemented Tailings Backfill: Hydration, Strength, Pore Structure, and Cost Analysis
,”
Case Studies in Construction Materials
15
(December
2021
): e00621, https://doi.org/10.1016/j.cscm.2021.e00621
18.
Özbay
E.
,
Erdemir
M.
, and
Durmuş
H. İ.
, “
Utilization and Efficiency of Ground Granulated Blast Furnace Slag on Concrete Properties – A Review
,”
Construction and Building Materials
105
(February
2016
):
423
434
, https://doi.org/10.1016/j.conbuildmat.2015.12.153
19.
Gesoğlu
M.
,
Güneyisi
E.
, and
Özbay
E.
, “
Properties of Self-Compacting Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends of Fly Ash, Blast Furnace Slag, and Silica Fume
,”
Construction and Building Materials
23
, no. 
5
(May
2009
):
1847
1854
, https://doi.org/10.1016/j.conbuildmat.2008.09.015
20.
Chen
W.
,
Zhu
H.
,
He
Z.
,
Yang
L.
,
Zhao
L.
, and
Wen
C.
, “
Experimental Investigation on Chloride-Ion Penetration Resistance of Slag Containing Fiber-Reinforced Concrete under Drying-Wetting Cycles
,”
Construction and Building Materials
274
(March
2021
): 121829, https://doi.org/10.1016/j.conbuildmat.2020.121829
21.
Sideris
K. K.
,
Tassos
C.
,
Chatzopoulos
A.
, and
Manita
P.
, “
Mechanical Characteristics and Durability of Self Compacting Concretes Produced with Ladle Furnace Slag
,”
Construction and Building Materials
170
(May
2018
):
660
667
, https://doi.org/10.1016/j.conbuildmat.2018.03.091
22.
Irico
S.
,
Qvaeschning
D.
,
Mutke
S.
,
Deuse
T.
,
Gastaldi
D.
, and
Canonico
F.
, “
Durability of High Performance Self-Compacting Concrete with Granulometrically Optimized Slag Cement
,”
Construction and Building Materials
298
(September
2021
): 123836, https://doi.org/10.1016/j.conbuildmat.2021.123836
23.
Aprianti
E.
,
Shafigh
P.
,
Zawawi
R.
, and
Abu Hassan
Z. F.
, “
Introducing an Effective Curing Method for Mortar Containing High Volume Cementitious Materials
,”
Construction and Building Materials
107
(March
2016
):
365
377
, https://doi.org/10.1016/j.conbuildmat.2015.12.100
24.
Megat Johari
M. A.
,
Brooks
J. J.
,
Kabir
S.
, and
Rivard
P.
, “
Influence of Supplementary Cementitious Materials on Engineering Properties of High Strength Concrete
,”
Construction and Building Materials
25
, no. 
5
(May
2011
):
2639
2648
, https://doi.org/10.1016/j.conbuildmat.2010.12.013
25.
Ben Fraj
A.
,
Bonnet
S.
,
Leklou
N.
, and
Khelidj
A.
, “
Investigating the Early-Age Diffusion of Chloride Ions in Hardening Slag-Blended Mortars on the Light of Their Hydration Progress
,”
Construction and Building Materials
225
(November
2019
):
485
495
, https://doi.org/10.1016/j.conbuildmat.2019.07.185
26.
Duraman
S. B.
and
Richardson
I. G.
, “
Microstructure & Properties of Steel-Reinforced Concrete Incorporating Portland Cement and Ground Granulated Blast Furnace Slag Hydrated at 20 °C
,”
Cement and Concrete Research
137
(November
2020
): 106193, https://doi.org/10.1016/j.cemconres.2020.106193
27.
Sadawy
M. M.
and
Nooman
M. T.
, “
Influence of Nano-Blast Furnace Slag on Microstructure, Mechanical and Corrosion Characteristics of Concrete
,”
Materials Chemistry and Physics
251
(September
2020
): 123092, https://doi.org/10.1016/j.matchemphys.2020.123092
28.
Zhuang
S.
and
Wang
Q.
, “
Inhibition Mechanisms of Steel Slag on the Early-Age Hydration of Cement
,”
Cement and Concrete Research
140
(February
2021
): 106283, https://doi.org/10.1016/j.cemconres.2020.106283
29.
Rajamallu
C.
,
Chandrasekhar Reddy
T.
, and
Arunakanthi
E.
, “
Service Life Prediction of Self Compacted Concretes with Respect to Chloride Ion Penetration
,”
Materials Today: Proceedings
46
, Part 
1
(
2021
):
677
681
, https://doi.org/10.1016/j.matpr.2020.11.746
30.
Han
X.
,
Feng
J.
,
Shao
Y.
, and
Hong
R.
, “
Influence of a Steel Slag Powder-Ground Fly Ash Composite Supplementary Cementitious Material on the Chloride and Sulphate Resistance of Mass Concrete
,”
Powder Technology
370
(June
2020
):
176
183
, https://doi.org/10.1016/j.powtec.2020.05.015
31.
Fan
J.
,
Zhu
H.
,
Shi
J.
,
Li
Z.
, and
Yang
S.
, “
Influence of Slag Content on the Bond Strength, Chloride Penetration Resistance, and Interface Phase Evolution of Concrete Repaired with Alkali Activated Slag/Fly Ash
,”
Construction and Building Materials
263
(December
2020
): 120639, https://doi.org/10.1016/j.conbuildmat.2020.120639
32.
Ali-Boucetta
T.
,
Behim
M.
,
Cassagnabere
F.
,
Mouret
M.
,
Ayat
A.
, and
Laifa
W.
, “
Durability of Concrete Containing Waste Bottle Glass and Granulated Slag
,”
Construction and Building Materials
270
(February
2021
): 121133, https://doi.org/10.1016/j.conbuildmat.2020.121133
33.
Dhir
R. K.
,
El-Mohr
M. A. K.
, and
Dyer
T. D.
, “
Chloride Binding in GGBS Concrete
,”
Cement and Concrete Research
26
, no. 
12
(December
1996
):
1767
1773
, https://doi.org/10.1016/S0008-8846(96)00180-9
34.
Hadj-Sadok
A.
,
Kenai
S.
,
Courard
L.
, and
Darimont
A.
, “
Microstructure and Durability of Mortars Modified with Medium Active Blast Furnace Slag
,”
Construction and Building Materials
25
, no. 
2
(February
2011
):
1018
1025
, https://doi.org/10.1016/j.conbuildmat.2010.06.077
35.
Bagheri
A. R.
,
Zanganeh
H.
, and
Moalemi
M. M.
, “
Mechanical and Durability Properties of Ternary Concretes Containing Silica Fume and Low Reactivity Blast Furnace Slag
,”
Cement and Concrete Composites
34
, no. 
5
(May
2012
):
663
670
, https://doi.org/10.1016/j.cemconcomp.2012.01.007
36.
Jau
W.-C.
and
Tsay
D.-S.
, “
A Study of the Basic Engineering Properties of Slag Cement Concrete and Its Resistance to Seawater Corrosion
,”
Cement and Concrete Research
28
, no. 
10
(October
1998
):
1363
1371
, https://doi.org/10.1016/S0008-8846(98)00117-3
37.
Ramezanianpour
A. A.
and
Malhotra
V. M.
, “
Effect of Curing on the Compressive Strength, Resistance to Chloride-Ion Penetration and Porosity of Concretes Incorporating Slag, Fly Ash or Silica Fume
,”
Cement and Concrete Composites
17
, no. 
2
(
1995
):
125
133
, https://doi.org/10.1016/0958-9465(95)00005-W
38.
Cheng
A.
,
Huang
R.
,
Wu
J.-K.
, and
Chen
C.-H.
, “
Influence of GGBS on Durability and Corrosion Behavior of Reinforced Concrete
,”
Materials Chemistry and Physics
93
, nos. 
2–3
(October
2005
):
404
411
, https://doi.org/10.1016/j.matchemphys.2005.03.043
39.
Yeau
K. Y.
and
Kim
E. K.
, “
An Experimental Study on Corrosion Resistance of Concrete with Ground Granulate Blast-Furnace Slag
,”
Cement and Concrete Research
35
, no. 
7
(July
2005
):
1391
1399
, https://doi.org/10.1016/j.cemconres.2004.11.010
40.
Kayali
O.
,
Khan
M. S. H.
, and
Sharfuddin Ahmed
M.
, “
The Role of Hydrotalcite in Chloride Binding and Corrosion Protection in Concretes with Ground Granulated Blast Furnace Slag
,”
Cement and Concrete Composites
34
, no. 
8
(September
2012
):
936
945
, https://doi.org/10.1016/j.cemconcomp.2012.04.009
41.
Shi
H.-S.
,
Xu
B.-W.
, and
Zhou
X.-C.
, “
Influence of Mineral Admixtures on Compressive Strength, Gas Permeability and Carbonation of High Performance Concrete
,”
Construction and Building Materials
23
, no. 
5
(May
2009
):
1980
1985
, https://doi.org/10.1016/j.conbuildmat.2008.08.021
42.
Sengul
O.
and
Tasdemir
M. A.
, “
Compressive Strength and Rapid Chloride Permeability of Concretes with Ground Fly Ash and Slag
,”
Journal of Materials in Civil Engineering
21
, no. 
9
(September
2009
):
494
501
, https://doi.org/10.1061/(ASCE)0899-1561(2009)21:9(494)
43.
Gupta
S.
, “
Effect of Content and Fineness of Slag as High Volume Cement Replacement on Strength and Durability of Ultra-High Performance Mortar
,”
Journal of Building Materials and Structures
3
, no. 
2
(November
2016
):
43
54
, https://doi.org/10.34118/jbms.v3i2.23
44.
Zhang
B.
,
Yan
B.
, and
Li
Y.
, “
Study on Mechanical Properties, Freeze–Thaw and Chlorides Penetration Resistance of Alkali Activated Granulated Blast Furnace Slag–Coal Gangue Concrete and Its Mechanism
,”
Construction and Building Materials
336
(February
2023
): 130218, https://doi.org/10.1016/j.conbuildmat.2022.130218
45.
Berndt
M. L.
, “
Properties of Sustainable Concrete Containing Fly Ash, Slag and Recycled Concrete
,”
Construction and Building Materials
23
, no. 
7
(July
2009
):
2606
2613
, https://doi.org/10.1016/j.conbuildmat.2009.02.011
46.
Thomas
M. D. A.
,
Scott
A.
,
Bremner
T.
,
Bilodeau
A.
, and
Day
D.
, “
Performance of Slag Concrete in Marine Environment
,”
ACI Materials Journal
105
, no. 
6
(November
2008
):
628
634
, https://doi.org/10.14359/20205
47.
Elahi
A.
,
Basheer
P. A. M.
,
Nanukuttan
S. V.
, and
Khan
Q. U. Z.
, “
Mechanical and Durability Properties of High Performance Concretes Containing Supplementary Cementitious Materials
,”
Construction and Building Materials
24
, no. 
3
(March
2010
):
292
299
, https://doi.org/10.1016/j.conbuildmat.2009.08.045
48.
McNally
C.
and
Sheils
E.
, “
Probability-Based Assessment of the Durability Characteristics of Concretes Manufactured Using CEM II and GGBS Binders
,”
Construction and Building Materials
30
(May
2012
):
22
29
, https://doi.org/10.1016/j.conbuildmat.2011.11.029
49.
Gencel
O.
,
Karadag
O.
,
Oren
O. H.
, and
Bilir
T.
, “
Steel Slag and Its Applications in Cement and Concrete Technology: A Review
,”
Construction and Building Materials
283
(May
2021
): 122783, https://doi.org/10.1016/j.conbuildmat.2021.122783
50.
Jiang
Y.
,
Ling
T.
,
Shi
C.
, and
Pan
S.-Y.
, “
Characteristics of Steel Slags and Their Use in Cement and Concrete – A Review
,”
Resources, Conservation and Recycling
136
(September
2018
):
187
197
, https://doi.org/10.1016/j.resconrec.2018.04.023
51.
Park
J.-S.
,
Yoon
Y.-S.
, and
Kwon
S.-J.
, “
Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages
,”
Journal of the Korea Concrete Institute
29
, no. 
3
(
2017
):
307
314
, https://doi.org/10.4334/JKCI.2017.29.3.307
52.
Samad
S.
,
Shah
A.
, and
Limbachiya
M. C.
, “
Strength Development Characteristics of Concrete Produced with Blended Cement Using Ground Granulated Blast Furnace Slag (GGBS) under Various Curing Conditions
,”
Sadhana
42
, no. 
7
(July
2017
):
1203
1213
, https://doi.org/10.1007/s12046-017-0667-z
53.
Du
H.
,
Gao
H. J.
, and
Pang
S. D.
, “
Improvement in Concrete Resistance against Water and Chloride Ingress by Adding Graphene Nanoplatelet
,”
Cement and Concrete Research
83
(May
2016
):
114
123
, https://doi.org/10.1016/j.cemconres.2016.02.005
54.
Wu
Z.
,
Shi
C.
, and
Khayat
K. H.
, “
Influence of Silica Fume Content on Microstructure Development and Bond to Steel Fiber in Ultra-High Strength Cement-Based Materials (UHSC)
,”
Cement and Concrete Composites
71
(August
2016
):
97
109
, https://doi.org/10.1016/j.cemconcomp.2016.05.005
55.
Gesoğlu
M.
and
Özbay
E.
, “
Effects of Mineral Admixtures on Fresh and Hardened Properties of Self-Compacting Concretes: Binary, Ternary and Quaternary Systems
,”
Materials and Structures
40
, no. 
9
(November
2007
):
923
937
, https://doi.org/10.1617/s11527-007-9242-0
56.
Ying
J.
,
Zhou
B.
, and
Xiao
J.
, “
Pore Structure and Chloride Diffusivity of Recycled Aggregate Concrete with Nano-SiO2 and Nano-TiO2
,”
Construction and Building Materials
150
(September
2017
):
49
55
, https://doi.org/10.1016/j.conbuildmat.2017.05.168
57.
Chuah
S.
,
Pan
Z.
,
Sanjayan
J. G.
,
Wang
C. M.
, and
Duan
W. H.
, “
Nano Reinforced Cement and Concrete Composites and New Perspective from Graphene Oxide
,”
Construction and Building Materials
73
(December
2014
):
113
124
, https://doi.org/10.1016/j.conbuildmat.2014.09.040
58.
Han
B.
,
Zhang
L.
,
Zeng
S.
,
Dong
S.
,
Yu
X.
,
Yang
R.
, and
Ou
J.
, “
Nano-Core Effect in Nano-Engineered Cementitious Composites
,”
Composites Part A, Applied Science and Manufacturing
95
(April
2017
):
100
109
, https://doi.org/10.1016/j.compositesa.2017.01.008
59.
Wang
J.
,
Dong
S.
,
Zhou
C.
,
Ashour
A.
, and
Han
B.
, “
Investigating Pore Structure of Nano-Engineered Concrete with Low-Field Nuclear Magnetic Resonance
,”
Journal of Materials Science
56
, no. 
1
(January
2021
):
243
259
, https://doi.org/10.1007/s10853-020-05268-0
60.
Wang
X.
,
Dong
S.
,
Li
Z.
,
Han
B.
, and
Ou
J.
, “
Nanomechanical Characteristics of Interfacial Transition Zone in Nano-Engineered Concrete
,”
Engineering
17
(October
2022
):
99
109
, https://doi.org/10.1016/j.eng.2020.08.025
61.
Wang
X.
,
Dong
S.
,
Ashour
A.
,
Zhang
W.
, and
Han
B.
, “
Effect and Mechanisms of Nanomaterials on Interface between Aggregates and Cement Mortars
,”
Construction and Building Materials
240
(April
2020
): 117942, https://doi.org/10.1016/j.conbuildmat.2019.117942
62.
Zheng
Q.
,
Han
B.
,
Cui
X.
,
Yu
X.
, and
Ou
J.
, “
Graphene-Engineered Cementitious Composites: Small Makes a Big Impact
,”
Nanomaterials and Nanotechnology
7
(
2017
):
1
18
, https://doi.org/10.1177/1847980417742304
63.
Kothiyal
N. C.
,
Sharma
S.
,
Mahajan
S.
, and
Sethi
S.
, “
Characterization of Reactive Graphene Oxide Synthesized from Ball-Milled Graphite: Its Enhanced Reinforcing Effects on Cement Nanocomposites
,”
Journal of Adhesion Science and Technology
30
, no. 
9
(
2016
):
915
933
, https://doi.org/10.1080/01694243.2015.1129214
64.
Zeng
H.
,
Qu
S.
,
Tian
Y.
,
Hu
Y.
, and
Li
Y.
, “
Recent Progress on Graphene Oxide for Next-Generation Concrete: Characterizations, Applications and Challenges
,”
Journal of Building Engineering
69
(June
2023
): 106192, https://doi.org/10.1016/j.jobe.2023.106192
65.
Rajesh
V.
and
Kumar
N.
, “
Influence of Nano-Structured Graphene Oxide on Strength and Performance Characteristics of High Strength Fiber Reinforced Self-Compacting Concrete
,”
Materials Today Proceeding
60
, Part 
1
(
2022
):
694
702
, https://doi.org/10.1016/j.matpr.2022.02.320
66.
Kang
D.
,
Seo
K. S.
,
Lee
H.-Y.
, and
Chung
W.
, “
Experimental Study on Mechanical Strength of GO-Cement Composites
,”
Construction and Building Materials
131
(January
2017
):
303
308
, https://doi.org/10.1016/j.conbuildmat.2016.11.083
67.
Saafi
M.
,
Tang
L.
,
Fung
J.
,
Rahman
M.
, and
Liggat
J.
, “
Enhanced Properties of Graphene/Fly Ash Geopolymeric Composite Cement
,”
Cement and Concrete Research
67
(January
2015
):
292
299
, https://doi.org/10.1016/j.cemconres.2014.08.011
68.
Bagri
A.
,
Mattevi
C.
,
Acik
M.
,
Chabal
Y. J.
,
Chhowalla
M.
, and
Shenoy
V. B.
, “
Structural Evolution during the Reduction of Chemically Derived Graphene Oxide
,”
Nature Chemistry
2
, no. 
7
(July
2010
):
581
587
, https://doi.org/10.1038/nchem.686
69.
Hou
D.
,
Zhao
T.
,
Ma
H.
, and
Li
Z.
, “
Reactive Molecular Simulation on Water Confined in the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical Properties
,”
The Journal of Physical Chemistry C
119
, no. 
3
(January
2015
):
1346
1358
, https://doi.org/10.1021/jp509292q
70.
Singh
V.
,
Joung
D.
,
Zhai
L.
,
Das
S.
,
Khondaker
S. I.
, and
Seal
S.
, “
Graphene Based Materials: Past, Present and Future
,”
Progress in Materials Science
56
, no. 
8
(October
2011
):
1178
1271
, https://doi.org/10.1016/j.pmatsci.2011.03.003
71.
Lv
S.
,
Ma
Y.
,
Qiu
C.
, and
Zhou
Q.
, “
Regulation of GO on Cement Hydration Crystals and Its Toughening Effect
,”
Magazine of Concrete Research
65
, no. 
20
(October
2013
):
1246
1254
, https://doi.org/10.1680/macr.13.00190
72.
Wang
M.
,
Wang
R.
,
Yao
H.
,
Wang
Z.
, and
Zheng
S.
, “
Adsorption Characteristics of Graphene Oxide Nanosheets on Cement
,”
RSC Advances
6
, no. 
68
(
2016
):
63365
63372
, https://doi.org/10.1039/C6RA10902K
73.
Zaid
O.
,
Hashmi
S. R. Z.
,
Aslam
F.
,
Ul Abedin
Z.
, and
Ullah
A.
, “
Experimental Study on the Properties Improvement of Hybrid Graphene Oxide Fiber-Reinforced Composite Concrete
,”
Diamond and Related Materials
124
(April
2022
): 108883, https://doi.org/10.1016/j.diamond.2022.108883
74.
Akarsh
P. K.
,
Shrinidhi
D.
,
Marathe
S.
, and
Bhat
A. K.
, “
Graphene Oxide as Nano-Material in Developing Sustainable Concrete – A Brief Review
,”
Materials Today: Proceedings
60
, Part 
1
(
2022
):
234
246
, https://doi.org/10.1016/j.matpr.2021.12.510
75.
Wang
Q.
,
Wang
J.
,
Lu
C.-X.
,
Liu
B.-W.
,
Zhang
K.
, and
Li
C.-Z.
, “
Influence of Graphene Oxide Additions on the Microstructure and Mechanical Strength of Cement
,”
New Carbon Materials
30
, no. 
4
(August
2015
):
349
356
, https://doi.org/10.1016/S1872-5805(15)60194-9
76.
Lua
Z.
,
Li
X.
,
Hanif
A.
,
Chen
B.
,
Parthasarathy
P.
,
Yu
J.
, and
Li
Z.
, “
Early-Age Interaction Mechanism between the Graphene Oxide and Cement Hydrates
,”
Construction and Building Materials
152
(October
2017
):
232
239
, https://doi.org/10.1016/j.conbuildmat.2017.06.176
77.
Hou
D.
,
Lu
Z.
,
Li
X.
,
Ma
H.
, and
Li
Z.
, “
Reactive Molecular Dynamics and Experimental Study of Graphene-Cement Composites: Structure, Dynamics and Reinforcement Mechanisms
,”
Carbon
115
(May
2017
):
188
208
, https://doi.org/10.1016/j.carbon.2017.01.013
78.
Long
W.-J.
,
Wei
J.-J.
,
Xing
F.
, and
Khayat
K. H.
, “
Enhanced Dynamic Mechanical Properties of Cement Paste Modified with Graphene Oxide Nanosheets and Its Reinforcing Mechanism
,”
Cement and Concrete Composites
93
(October
2018
):
127
139
, https://doi.org/10.1016/j.cemconcomp.2018.07.001
79.
Yang
H.
,
Monasterio
M.
,
Cui
H.
, and
Han
N.
, “
Experimental Study of the Effects of Graphene Oxide on Microstructure and Properties of Cement Paste Composite
,”
Composites Part A: Applied Science and Manufacturing
102
(November
2017
):
263
272
, https://doi.org/10.1016/j.compositesa.2017.07.022
80.
Lv
S.
,
Ma
Y.
,
Qiu
C.
,
Sun
T.
,
Liu
J.
, and
Zhou
Q.
, “
Effect of Graphene Oxide Nanosheets of Microstructure and Mechanical Properties of Cement Composites
,”
Construction and Building Materials
49
(December
2013
):
121
127
, https://doi.org/10.1016/j.conbuildmat.2013.08.022
81.
Jing
G.
,
Wu
J.
,
Lei
T.
,
Wang
S.
,
Strokova
V.
,
Nelyubova
V.
,
Wang
M.
, and
Ye
Z.
, “
From Graphene Oxide to Reduced Graphene Oxide: Enhanced Hydration and Compressive Strength of Cement Composites
,”
Construction and Building Materials
248
(July
2020
): 118699, https://doi.org/10.1016/j.conbuildmat.2020.118699
82.
Peng
H.
,
Ge
Y.
,
Cai
C. S.
,
Zhang
Y.
, and
Liu
Z.
, “
Mechanical Properties and Microstructure of Graphene Oxide Cement-Based Composites
,”
Construction and Building Materials
194
(January
2019
):
102
109
, https://doi.org/10.1016/j.conbuildmat.2018.10.234
83.
Son
D.-H.
,
Hwangbo
D.
,
Suh
H.
,
Bae
B.-I.
,
Bae
S.
, and
Choi
C.-S.
, “
Mechanical Properties of Mortar and Concrete Incorporated with Concentrated Graphene Oxide, Functionalized Carbon Nanotube, Nano Silica Hybrid Aqueous Solution
,”
Case Studies in Construction Materials
18
(July
2023
): e01603, https://doi.org/10.1016/j.cscm.2022.e01603
84.
Mohammed
A.
,
Sanjayan
J. G.
,
Duan
W. H.
, and
Nazari
A.
, “
Graphene Oxide Impact on Hardened Cement Expressed in Enhanced Freeze-Thaw Resistance
,”
Journal of Materials in Civil Engineering
28
, no. 
9
(September
2016
): 04016072, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001586
85.
Wang
Q.
,
Li
S.
,
Pan
S.
,
Cui
X.
,
Corr
D. J.
, and
Shah
S. P.
, “
Effect of Graphene Oxide on the Hydration and Microstructure of Fly Ash-Cement System
,”
Construction and Building Materials
198
(February
2019
):
106
119
, https://doi.org/10.1016/j.conbuildmat.2018.11.199
86.
Jiang
W.
,
Li
X.
,
Lv
Y.
,
Zhou
M.
,
Liu
Z.
,
Ren
Z.
, and
Yu
Z.
, “
Cement-Based Materials Containing Graphene Oxide and Polyvinyl Alcohol Fiber: Mechanical Properties, Durability, and Microstructure
,”
Nanomaterials
8
, no. 
9
(September
2018
): 638, https://doi.org/10.3390/nano8090638
87.
Somasri
M.
and
Narendra Kumar
B.
, “
Graphene Oxide as Nano Material in High Strength Self-Compacting Concrete
,”
Materials Today: Proceedings
43
, Part 
2
(
2021
):
2280
2289
, https://doi.org/10.1016/j.matpr.2020.12.1085
88.
Reddy
P. V. R. K.
and
Ravi Prasad
D.
, “
The Role of Graphene Oxide in the Strength and Vibration Characteristics of Standard and High-Grade Cement Concrete
,”
Journal of Building Engineering
63
, Part 
A
(January
2023
): 105481, https://doi.org/10.1016/j.jobe.2022.105481
89.
Zhu
X. H.
,
Kang
X. J.
,
Yang
K.
, and
Yang
C. H.
, “
Effect of Graphene Oxide on the Mechanical Properties and the Formation of Layered Double Hydroxides (LDHs) in Alkali-Activated Slag Cement
,”
Construction and Building Materials
132
(February
2017
):
290
295
, https://doi.org/10.1016/j.conbuildmat.2016.11.059
90.
Bhojaraju
C.
,
Mousavi
S. S.
,
Brial
V.
,
DiMare
M.
, and
Ouellet-Plamondon
C. M.
, “
Fresh and Hardened Properties of GGBS-Contained Cementitious Composites Using Graphene and Graphene Oxide
,”
Construction and Building Materials
300
(September
2021
): 123902, https://doi.org/10.1016/j.conbuildmat.2021.123902
91.
Li
X.
,
Korayem
A. H.
,
Li
C.
,
Liu
Y.
,
He
H.
,
Sanjayan
J. G.
, and
Duan
W. H.
, “
Incorporation of Graphene Oxide and Silica Fume into Cement Paste: A Study of Dispersion and Compressive Strength
,”
Construction and Building Materials
123
(October
2016
):
327
335
, https://doi.org/10.1016/j.conbuildmat.2016.07.022
92.
Xu
G.
,
Zhong
J.
, and
Shi
X.
, “
Influence of Graphene Oxide in a Chemically Activated Fly Ash
,”
Fuel
226
(August
2018
):
644
657
, https://doi.org/10.1016/j.fuel.2018.04.033
93.
Vishnu
N.
,
Kolli
R.
, and
Ravella
D. P.
, “
Studies on Self-Compacting Geopolymer Concrete Containing Flyash, GGBS, Wollastonite and Graphene Oxide
,”
Materials Today: Proceedings
43
, Part 
2
(
2021
):
2422
2427
, https://doi.org/10.1016/j.matpr.2021.02.142
94.
Standard Specification for Portland Cement
(Superseded),
ASTM C150M-17
(
West Conshohocken, PA
:
ASTM International
, approved April 1,
2017
), https://doi.org/https://doi.og/10.1520/C0150_C0150M-17
95.
Lu
L.
and
Ouyang
D.
, “
Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets
,”
Nanomaterials
7
, no. 
7
(July
2017
): 187, https://doi.org/10.3390/nano7070187
96.
Siburian
R.
,
Sihotang
H.
,
Lumban Raja
S.
,
Supeno
M.
, and
Simanjuntak
C.
, “
New Route to Synthesize of Graphene Nano Sheets
,”
Oriental Journal of Chemistry
34
, no. 
1
(February
2018
):
182
187
, https://doi.org/10.13005/ojc/340120
97.
Storm
M. M.
,
Johnsen
R. E.
, and
Norby
P.
, “
In Situ X-ray Powder Diffraction Studies of the Synthesis of Graphene Oxide and Formation of Reduced Graphene Oxide
,”
Journal of Solid State Chemistry
240
(August
2016
):
49
54
, https://doi.org/10.1016/j.jssc.2016.05.019
98.
Ahmad
A.
,
Ullah
S.
,
Khan
A.
,
Ahmad
W.
,
Khan
A. U.
,
Khan
U. A.
,
Rahman
A. U.
, and
Yuan
Q.
, “
Graphene Oxide Selenium Nanorod Composite as a Stable Electrode Material for Energy Storage Devices
,”
Applied Nanoscience
10
, no. 
4
(April
2020
):
1243
1255
, https://doi.org/10.1007/s13204-019-01204-0
99.
Mohammed
A.
,
Sanjayan
J. G.
,
Duan
W. H.
, and
Nazari
A.
, “
Incorporating Graphene Oxide in Cement Composites: A Study of Transport Properties
,”
Construction and Building Materials
84
(June
2015
):
341
347
, https://doi.org/10.1016/j.conbuildmat.2015.01.083
100.
Mahendran
R.
,
Sridharan
D.
,
Santhakumar
K.
,
Selvakumar
T. A.
,
Rajasekar
P.
, and
Jang
J.-H.
, “
Graphene Oxide Reinforced Polycarbonate Nanocomposite Films with Antibacterial Properties
,”
Indian Journal of Materials Science
2016
(
2016
): 4169409, https://doi.org/10.1155/2016/4169409
101.
Eigler
S.
and
Hirsch
A.
, “
Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists
,”
Angewandte Chemie International Edition
53
, no. 
30
(July
2014
):
7720
7738
, https://doi.org/10.1002/anie.201402780
102.
Guerrero-Contreras
J.
and
Caballero-Briones
F.
, “
Graphene Oxide Powders with Different Oxidation Degrees, Prepared by Synthesis Variations of the Hummers Method
,”
Materials Chemistry and Physics
153
(March
2015
):
209
220
, https://doi.org/10.1016/j.matchemphys.2015.01.005
103.
Male
U.
,
Srinivasan
P.
, and
Singu
B. S.
, “
Incorporation of Polyaniline Nanofibres on Graphene Oxide by Interfacial Polymerization Pathway for Supercapacitor
,”
International Nano Letters
5
, no. 
4
(December
2015
):
231
240
, https://doi.org/10.1007/s40089-015-0160-9
104.
Hemidouche
S.
,
Boudriche
L.
,
Boudjemaa
A.
, and
Hamoudi
S.
, “
Removal of Lead (II) and Cadmium (II) Cations from Water Using Surface-Modified Graphene
,”
Canadian Journal of Chemical Engineering
95
, no. 
3
(March
2017
):
508
515
, https://doi.org/10.1002/cjce.22693
105.
Saleem
H.
,
Haneef
M.
, and
Abbasi
H. Y.
, “
Synthesis Route of Reduced Graphene Oxide via Thermal Reduction of Chemically Exfoliated Graphene Oxide
,”
Materials Chemistry and Physics
204
(January
2018
):
1
7
, https://doi.org/10.1016/j.matchemphys.2017.10.020
106.
Liu
L.
,
Wang
C.
, and
Wang
G.
, “
Novel Cysteic Acid/Reduced Graphene Oxide Composite Film Modified Electrode for the Selective Detection of Trace Silver Ions in Natural Waters
,”
Analytical Methods
5
, no. 
20
(October
2013
):
5812
5822
, https://doi.org/10.1039/c3ay40888d
107.
Shi
X.
,
Xie
N.
,
Fortune
K.
, and
Gong
J.
, “
Durability of Steel Reinforced Concrete in Chloride Environments: An Overview
,”
Construction and Building Materials
30
(May
2012
):
125
138
, https://doi.org/10.1016/j.conbuildmat.2011.12.038
108.
Ahmad
J.
,
Kontoleon
K. J.
,
Majdi
A.
,
Naqash
M. T.
,
Deifalla
A. F.
,
Kahla
N. B.
,
Isleem
H. F.
, and
Qaidi
S. M. A.
, “
A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production
,”
Sustainability
14
, no. 
14
(July
2022
): 8783, https://doi.org/10.3390/su14148783
109.
Rashad
A. M.
, “
An Overview on Rheology, Mechanical Properties and Durability of High-Volume Slag Used as a Cement Replacement in Paste, Mortar and Concrete
,”
Construction and Building Materials
187
(October
2018
):
89
117
, https://doi.org/10.1016/j.conbuildmat.2018.07.150
110.
Li
M.
and
Kim
J.-M.
, “
Strength Properties and Micro-Structure of Steel Slag Based Hardened Cementitious Composite with Graphene Oxide
,” in
MATEC Web of Conferences: 16th International Conference of Euro Asia Civil Engineering Forum
(
Les Ulis, France
:
EDP Sciences
,
2017
), 03012, https://doi.org/10.1051/matecconf/201713803012
111.
Babak
F.
,
Abolfazl
H.
,
Alimorad
R.
, and
Parviz
G.
, “
Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites
,”
The Scientific World Journal
2014
(
2014
): 276323, https://doi.org/10.1155/2014/276323
112.
Li
X.
,
Liu
Y. M.
,
Li
W. G.
,
Li
C. Y.
,
Sanjayan
J. G.
,
Duan
W. H.
, and
Li
Z.
, “
Effects of Graphene Oxide Agglomerates on Workability, Hydration, Microstructure and Compressive Strength of Cement Paste
,”
Construction and Building Materials
145
(August
2017
):
402
410
, https://doi.org/10.1016/j.conbuildmat.2017.04.058
113.
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
(Superseded), ASTM C192M-16a (West Conshohocken, PA:
ASTM International
, approved June 1,
2016
), https://doi.org/10.1520/C0192_C0192M-16A
114.
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
, ASTM C39/C39M-17 (West Conshohocken, PA:
ASTM International
, approved February 1,
2017
), https://doi.org/10.1520/C0039_C0039M-17
115.
Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading)
, ASTM C293/C293M-16 (West Conshohocken, PA:
ASTM International
, approved April 15,
2016
), https://doi.org/10.1520/C0293_C0293M-16
116.
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
, ASTM C496/C496M-17 (West Conshohocken, PA:
ASTM International
, approved October 1,
2017
), https://doi.org/10.1520/C0496_C0496M-17
117.
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
(Superseded), ASTM C1202-12 (West Conshohocken, PA:
ASTM International
, approved February 1,
2012
), https://doi.org/10.1520/C1202-12
118.
Lataste
J. F.
,
Sirieix
C.
,
Breysse
D.
, and
Frappa
M.
, “
Electrical Resistivity Measurement Applied to Cracking Assessment on Reinforced Concrete Structures in Civil Engineering
,”
NDT and E International
36
, no. 
6
(September
2003
):
383
394
, https://doi.org/10.1016/S0963-8695(03)00013-6
119.
Azarsa
P.
and
Gupta
R.
, “
Electrical Resistivity of Concrete for Durability Evaluation: A Review
,”
Advances in Materials Science and Engineering
2017
(
2017
): 8453095, https://doi.org/10.1155/2017/8453095
120.
Standard Test Method for Density, Absorption, and Voids in Hardened Concrete
(Superseded), ASTM C642-13 (West Conshohocken, PA:
ASTM International
, approved February 1,
2013
), https://doi.org/10.1520/C0642-13
121.
Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry
(Superseded), ASTM D4404-10 (West Conshohocken, PA:
ASTM International
, approved May 1,
2010
), https://doi.org/10.1520/D4404-10
122.
Ma
H.
, “
Mercury Intrusion Porosimetry in Concrete Technology: Tips in Measurement, Pore Structure Parameter Acquisition and Application
,”
Journal of Porous Materials
21
, no. 
2
(April
2014
):
207
215
, https://doi.org/10.1007/s10934-013-9765-4
123.
Gao
S.
,
Liu
Q.
,
Han
F.
, and
Fu
Y.
, “
Mix Design of Recycled Coarse Aggregate Self-Compacting Concrete Based on Orthogonal Test and Analysis of Mercury Intrusion Porosimetry
,”
Advances in Materials Science and Engineering
2021
(
2021
): 4829673, https://doi.org/10.1155/2021/4829673
124.
Ahmed
H. S.
, “
New Approach of Mercury Intrusion Porosimetry to Evaluate the Microstructure of Cement-Bases Matrixes: Application on Slag Cement Mortars
,”
Materials Today: Proceedings
58
, Part 
4
(
2022
):
1368
1373
, https://doi.org/10.1016/j.matpr.2022.02.233
125.
Kumar
R.
and
Bhattacharjee
B.
, “
Assessment of Permeation Quality of Concrete through Mercury Intrusion Porosimetry
,”
Cement and Concrete Research
34
, no. 
2
(February
2004
):
321
328
, https://doi.org/10.1016/j.cemconres.2003.08.013
126.
Wang
J.
,
Dong
S.
,
Pang
S. D.
,
Zhou
C.
, and
Han
B.
, “
Pore Structure Characteristics of Concrete Composites with Surface-Modified Carbon Nanotubes
,”
Cement and Concrete Composites
128
(April
2022
): 104453, https://doi.org/10.1016/j.cemconcomp.2022.104453
127.
Liu
C.
,
Zhang
W.
,
Liu
H.
,
Zhu
C.
,
Wu
Y.
,
He
C.
, and
Wang
Z.
, “
Recycled Aggregate Concrete with the Incorporation of Rice Husk Ash: Mechanical Properties and Microstructure
,”
Construction and Building Materials
351
(October
2022
): 128934, https://doi.org/10.1016/j.conbuildmat.2022.128934
128.
Sikora
P.
,
Techman
M.
,
Federowicz
K.
,
El-Khayatt
A. M.
,
Saudi
H. A.
,
Abd Elrahman
M.
,
Hoffmann
M.
,
Stephan
D.
, and
Chung
S.-Y.
, “
Insight into the Microstructural and Durability Characteristics of 3D Printed Concrete: Cast versus Printed Specimens
,”
Case Studies in Construction Materials
17
(December
2022
): e01320, https://doi.org/10.1016/j.cscm.2022.e01320
129.
Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry
(Superseded), ASTM C1679-08 (West Conshohocken, PA:
ASTM International
, approved June 1,
2008
), https://doi.org/10.1520/C1679-08
130.
Standard Test Method for Thermogravimetric Analysis of Hydraulic Cement
(Superseded), ASTM C1872-18 (West Conshohocken, PA:
ASTM International
, approved May 15,
2018
), https://doi.org/10.1520/C1872-18
131.
Zhao
Y.
,
Wittmann
F. H.
,
Zhang
P.
,
Wang
P. G.
, and
Zhao
T. J.
, “
Penetration of Water and Chloride Dissolved in Water into Concrete under Hydraulic Pressure
,”
Restoration of Buildings and Monuments
20
, no. 
2
(December
2014
):
117
126
, https://doi.org/10.1515/rbm14.20.2-0012
132.
Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion
(Superseded), ASTM C1556-11a(2016) (West Conshohocken, PA:
ASTM International
, approved April 1,
2016
), https://doi.org/https://10.1520/C1556-11AR16
133.
Mo
K. H.
,
Johnson Alengaram
U.
,
Jumaat
M. Z.
, and
Yap
S. P.
, “
Feasibility Study of High Volume Slag as Cement Replacement for Sustainable Structural Lightweight Oil Palm Shell Concrete
,”
Journal of Cleaner Production
91
(March
2015
):
297
304
, https://doi.org/10.1016/j.jclepro.2014.12.021
134.
Shen
D.
,
Jiao
Y.
,
Kang
J.
,
Feng
Z.
, and
Shen
Y.
, “
Influence of Ground Granulated Blast Furnace Slag on the Early-Age Cracking Potential of Internally Cured High-Performance Concrete
,”
Construction and Building Materials
233
(February
2020
): 117083, https://doi.org/10.1016/j.conbuildmat.2019.117083
135.
Güneyisi
E.
and
Gesoğlu
M.
, “
A Study on Durability Properties of High-Performance Concretes Incorporating High Replacement Levels of Slag
,”
Materials and Structures
41
, no. 
3
(April
2008
):
479
493
, https://doi.org/10.1617/s11527-007-9260-y
136.
Park
J.-H.
and
Lee
H.-S.
, “
Effect of Curing Condition on the Chloride Ion Diffusion Coefficient in Concrete with GGBFS
,”
Journal of the Korea Institute of Building Construction
19
, no. 
5
(
2019
):
421
429
, https://doi.org/10.5345/JKIBC.2019.19.5.421
137.
Yoon
Y.-S.
,
Cho
S.-J.
, and
Kwon
S.-J.
, “
Prediction Equation for Chloride Diffusion in Concrete Containing GGBFS Based on 2-Year Cured Results,”
Journal of the Korea Institute for Structural Maintenance and Inspection
23
, no. 
2
(March
2019
):
1
9
, https://doi.org/10.11112/jksmi.2019.23.2.1
138.
Yang
H.-M.
,
Kwon
S.-J.
,
Myung
N. V.
,
Singh
J. K.
,
Lee
H.-S.
, and
Mandal
S.
, “
Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy
,”
Materials
13
, no. 
2
(January
2020
): 442, https://doi.org/10.3390/ma13020442
139.
Oner
A.
and
Akyuz
S.
, “
An Experimental Study on Optimum Usage of GGBS for the Compressive Strength of Concrete
,”
Cement and Concrete Composites
29
, no. 
6
(July
2007
):
505
514
, https://doi.org/10.1016/j.cemconcomp.2007.01.001
140.
Gong
K.
,
Pan
Z.
,
Korayem
A. H.
,
Qiu
L.
,
Li
D.
,
Collins
F.
,
Wang
C. M.
, and
Duan
W. H.
, “
Reinforcing Effects of Graphene Oxide on Portland Cement Paste
,”
Journal of Materials in Civil Engineering
27
, no. 
2
(February
2015
): A4014010, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125
141.
Yu
L. B.
,
Jiang
L. H.
,
Chu
H. Q.
,
Guo
M. Z.
,
Zhu
Z. Y.
, and
Dong
H.
, “
Effect of Electrochemical Chloride Removal and Ground Granulated Blast Furnace Slag on the Chloride Binding of Cement Paste Subjected to NaCl and Na2SO4 Attack
,”
Construction and Building Materials
220
(September
2019
):
538
546
, https://doi.org/10.1016/j.conbuildmat.2019.06.033
142.
Luo
R.
,
Cai
Y.
,
Wang
C.
, and
Huang
X.
, “
Study of Chloride Binding and Diffusion in GGBS Concrete
,”
Cement and Concrete Research
33
, no. 
1
(January
2003
):
1
7
, https://doi.org/10.1016/S0008-8846(02)00712-3
143.
Khan
M. S. H.
and
Kayali
O.
, “
Chloride Binding Ability and the Onset Corrosion Threat on Alkali-Activated GGBFS and Binary Blend Pastes
,”
European Journal of Environmental and Civil Engineering
22
, no. 
8
(
2018
):
1023
1039
, https://doi.org/10.1080/19648189.2016.1230522
144.
Zhao
H.
,
Sun
W.
,
Wu
X.
, and
Gao
B.
, “
The Properties of the Self-Compacting Concrete with Fly Ash and Ground Granulated Blast Furnace Slag Mineral Admixtures
,”
Journal of Cleaner Production
95
(May
2015
):
66
74
, https://doi.org/10.1016/j.jclepro.2015.02.050
145.
Chen
C.
,
Lu
C.
,
Lu
C.
,
Wei
S.
,
Guo
Z.
,
Zhou
Q.
, and
Wang
W.
, “
Synergetic Effect of Fly Ash and Ground-Granulated Blast Slag on Improving the Chloride Permeability and Freeze–Thaw Resistance of Recycled Aggregate Concrete
,”
Construction and Building Materials
365
(February
2023
): 130015, https://doi.org/10.1016/j.conbuildmat.2022.130015
146.
Jang
S.-Y.
,
Karthick
S.
, and
Kwon
S.-J.
, “
Investigation on Durability Performance in Early Aged High-Performance Concrete Containing GGBFS and FA
,”
Advances in Materials Science and Engineering
2017
(
2017
): 3214696, https://doi.org/10.1155/2017/3214696
147.
Guo
K.
,
Miao
H.
,
Liu
L.
,
Zhou
J.
, and
Liu
M.
, “
Effect of Graphene Oxide on Chloride Penetration Resistance of Recycled Concrete
,”
Nanotechnology Reviews
8
, no. 
1
(January
2019
):
681
689
, https://doi.org/10.1515/ntrev-2019-0059
148.
Li
S.
,
Liu
G.
, and
Yu
Q.
, “
The Role of Carbonated Steel Slag on Mechanical Performance of Ultra-High Performance Concrete Containing Coarse Aggregates
,”
Construction and Building Materials
307
(November
2021
): 124903, https://doi.org/10.1016/j.conbuildmat.2021.124903
149.
Li
P. P.
,
Brouwers
H. J. H.
,
Chen
W.
, and
Yu
Q.
, “
Optimization and Characterization of High-Volume Limestone Powder in Sustainable Ultra-High Performance Concrete
,”
Construction and Building Materials
242
(May
2020
): 118112, https://doi.org/10.1016/j.conbuildmat.2020.118112
150.
Huang
W.
,
Kazemi-Kamyab
H.
,
Sun
W.
, and
Scrivener
K.
, “
Effect of Cement Substitution by Limestone on the Hydration and Microstructural Development of Ultra-High Performance Concrete (UHPC)
,”
Cement and Concrete Composites
77
(March
2017
):
86
101
, https://doi.org/10.1016/j.cemconcomp.2016.12.009
151.
Kumar
R.
and
Bhattacharjee
B.
, “
Porosity, Pore Size Distribution and In Situ Strength of Concrete
,”
Cement and Concrete Research
33
, no. 
1
(January
2003
):
155
164
, https://doi.org/10.1016/S0008-8846(02)00942-0
152.
Ye
G.
,
Liu
X.
,
De Schutter
G.
,
Poppe
A.-M.
, and
Taerwe
L.
, “
Influence of Limestone Powder Used as Filler in SCC on Hydration and Microstructure of Cement Pastes
,”
Cement and Concrete Composites
29
, no. 
2
(February
2007
):
94
102
, https://doi.org/10.1016/j.cemconcomp.2006.09.003
153.
Polder
R. B.
and
de Rooij
M. R.
, “
Durability of Marine Concrete Structures – Field Investigations and Modelling
,”
Heron
50
, no. 
3
(
2005
):
133
153
.
154.
Dai
J.
,
Wang
Q.
,
Xie
C.
,
Xue
Y.
,
Duan
Y.
, and
Cui
X.
, “
The Effect of Fineness on the Hydration Activity Index of Ground Granulated Blast Furnace Slag
,”
Materials
12
, no. 
18
(September
2019
): 2984, https://doi.org/10.3390/ma12182984
155.
Scrivener
K. L.
, “
Backscattered Electron Imaging of Cementitious Microstructures: Understanding and Quantification
,”
Cement and Concrete Composites
26
, no. 
8
(November
2004
):
935
945
, https://doi.org/10.1016/j.cemconcomp.2004.02.029
156.
Ma
Z.
,
Zhao
T.
, and
Zhao
Y.
, “
Effects of Hydrostatic Pressure on Chloride Ion Penetration into Concrete
,”
Magazine of Concrete Research
68
, no. 
17
(September
2016
):
877
886
, https://doi.org/10.1680/jmacr.15.00364
157.
Lund
M. S.
,
Sander
L. B.
,
Grelk
B.
,
Hansen
K. K.
, “
Chloride Ingress into Concrete under Water Pressure
,” in
Nordic Concrete Research: Proceedings of XXI Nordic Concrete Research Symposia
(
Oslow, Norway
:
Norsk Betongforening
,
2011
),
207
210
, https://doi.org/https://web.archive.org/web/20230321161946/https://nordicconcrete.net/wp-content/uploads/2011/01/Vol-43-Proceedings-Finland-2011.pdf
158.
Turgeon-Malette
V.
,
Chen
X.
,
Bah
A. S.
,
Conciatori
D.
,
Sanchez
T.
,
Teguedy
M. C.
, and
Sorelli
L.
, “
Chloride Ion Permeability of Ultra-High-Performance Fiber-Reinforced Concrete under Sustained Load
,”
Journal of Building Engineering
66
(May
2023
): 105842, https://doi.org/10.1016/j.jobe.2023.105842
159.
Wainwright
P. J.
and
Rey
N.
, “
The Influence of Ground Granulated Blastfurnace Slag (GGBS) Additions and Time Delay on the Bleeding of Concrete
,”
Cement and Concrete Composites
22
, no. 
4
(
2000
):
253
257
, https://doi.org/10.1016/S0958-9465(00)00024-X
160.
Long
W.-J.
,
Ye
T.-H.
,
Li
L.-X.
, and
Feng
G.-L.
, “
Electrochemical Characterization and Inhibiting Mechanism on Calcium Leaching of Graphene Oxide Reinforced Cement Composites
,”
Nanomaterials
9
, no. 
2
(February
2019
): 288, https://doi.org/10.3390/nano9020288
This content is only available via PDF.
You do not currently have access to this content.