Abstract

This study emphasizes the reactivity evaluation of pozzolans and the durability performance of blended cements containing pozzolans. A ground glass, three raw natural pozzolans, and two blended pozzolans of ground glass and raw natural pozzolan were examined for reactivity using the modified lime-reactivity test, the strength-activity index (SAI) (ASTM C311, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete/ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete), the bound water test (ASTM C1897, Standard Test Methods for Measuring the Reactivity of Supplementary Cementitious Materials by Isothermal Calorimetry and Bound Water Measurements), and an electrical resistivity index (ERI) from tests conducted on the mortar cubes produced for the SAI. The pozzolans, including the blends, were combined with a high-alkali portland cement and investigated for their efficacy in mitigating alkali-silica reaction (ASR) in the Pyrex mortar bar test (ASTM C441, Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete due to the Alkali-Silica Reaction) and the accelerated mortar bar test (ASTM C1567, Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method)). Mortar bars with the control mix and two blended pozzolans were prepared to determine sulfate resistance in a 5 % sodium sulfate solution. In addition, three concrete mixes were developed to determine air void parameters, compressive strength, and resistance to chloride ion penetration. The pozzolans demonstrate a range in reactivity in all tests except the ASTM C1897 bound water test. The natural pozzolans have high water demand but meet the water demand limit and both the 7-day and 28-day SAI requirements of ASTM C618-19, whereas the ground glass does not meet one of the requirements of ASTM C1866, Standard Specification for Ground-Glass Pozzolan for Use in Concrete—the 28-day SAI. Blended pozzolans improve the resistance of blended cements against sulfate attack and chloride-ion penetration at 28 days or later. The reactivity results indicate that resistivity or ERI is effective in estimating the pozzolanic reactivity of materials tested. ASR mitigation caused by pozzolans in one test is in good agreement with that found in another. However, a disparity between the outcomes of the ASR tests (ASTM C441 and ASTM C1567) is present.

References

1.
American Coal Ash Association “
Coal Ash Recycling Rate Declines amid Shifting Production and Use Patterns
,” PR Newswire,
2019
, http://web.archive.org/web/20220720204059/https://acaa-usa.org/wp-content/uploads/coal-combustion-products-use/Coal-Ash-Production-and-Use.pdf
2.
Kasaniya
M.
,
Thomas
M. D. A.
, and
Moffatt
E. G.
, “
Pozzolanic Reactivity of Natural Pozzolans, Ground Glasses and Coal Bottom Ashes and Implication of Their Incorporation on the Chloride Permeability of Concrete
,”
Cement and Concrete Research
139
(January
2021
): 106259, https://doi.org/10.1016/j.cemconres.2020.106259
3.
Kasaniya
M.
,
Thomas
M. D. A.
, and
Moffatt
E. G.
, “
Efficiency of Natural Pozzolans, Ground Glasses and Coal Bottom Ashes in Mitigating Sulfate Attack and Alkali-Silica Reaction
,”
Cement and Concrete Research
149
(November
2021
): 106551, https://doi.org/10.1016/j.cemconres.2021.106551
4.
Rodríguez-Camacho
R. E.
and
Uribe-Afif
R.
, “
Importance of Using the Natural Pozzolans on Concrete Durability
,”
Cement and Concrete Research
32
, no. 
12
(December
2002
):
1851
1858
, https://doi.org/10.1016/S0008-8846(01)00714-1
5.
Pourkhorshidi
A. R.
,
Najimi
M.
,
Parhizkar
T.
,
Jafarpour
F.
, and
Hillemeier
B.
, “
Applicability of the Standard Specifications of ASTM C618 for Evaluation of Natural Pozzolans
,”
Cement and Concrete Composites
32
, no. 
10
(November
2010
):
794
800
, https://doi.org/10.1016/j.cemconcomp.2010.08.007
6.
Kasaniya
M.
,
Thomas
M. D. A.
, and
Moffatt
E. G.
, “
Development of a Rapid and Reliable Pozzolanic Reactivity Test Method
,”
ACI Materials Journal
116
, no. 
4
(July
2019
):
145
154
.
7.
Kalina
R. D.
,
Al-Shmaisani
S.
,
Ferron
R. D.
, and
Juenger
M. C. G.
, “
False Positives in ASTM C618 Specifications for Natural Pozzolans
,”
ACI Materials Journal
116
, no. 
1
(January
2019
):
165
172
.
8.
Avet
F.
,
Snellings
R.
,
Diaz
A. A.
,
Haha
M. B.
, and
Scrivener
K.
, “
Development of a New Rapid, Relevant and Reliable (R3) Test Method to Evaluate the Pozzolanic Reactivity of Calcined Kaolinitic Clays
,”
Cement and Concrete Research
85
(July
2016
):
1
11
, https://doi.org/10.1016/j.cemconres.2016.02.015
9.
Suraneni
P.
and
Weiss
J.
, “
Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis
,”
Cement and Concrete Composites
83
(October
2017
):
273
278
, https://doi.org/10.1016/j.cemconcomp.2017.07.009
10.
Suraneni
P.
,
Hajibabaee
A.
,
Ramanathan
S.
,
Wang
Y.
, and
Weiss
J.
, “
New Insights from Reactivity Testing of Supplementary Cementitious Materials
,”
Cement and Concrete Composites
103
(October
2019
):
331
338
, https://doi.org/10.1016/j.cemconcomp.2019.05.017
11.
Ramanathan
S.
,
Moon
H.
,
Croly
M.
,
Chung
C. W.
, and
Suraneni
P.
, “
Predicting the Degree of Reaction of Supplementary Cementitious Materials in Cementitious Pastes Using a Pozzolanic Test
,”
Construction and Building Materials
204
(April
2019
):
621
630
, https://doi.org/10.1016/j.conbuildmat.2019.01.173
12.
Ramanathan
S.
,
Kasaniya
M.
,
Tuen
M.
,
Thomas
M. D. A.
, and
Suraneni
P.
, “
Linking Reactivity Test Outputs to Properties of Cementitious Pastes Made with Supplementary Cementitious Materials
,”
Cement and Concrete Composites
114
(November
2020
): 103742, https://doi.org/10.1016/j.cemconcomp.2020.103742
13.
Kasaniya
M.
,
Alaibani
A.
,
Thomas
M. D. A.
, and
Riding
K. A.
, “
Exploring the Efficacy of Emerging Reactivity Tests in Screening Pozzolanic Materials
,”
Construction and Building Materials
325
(March
2022
): 126781, https://doi.org/10.1016/j.conbuildmat.2022.126781
14.
Al-Shmaisani
S.
,
Kalina
R. D.
,
Ferron
R. D.
, and
Juenger
M. C. G.
, “
Critical Assessment of Rapid Methods to Qualify Supplementary Cementitious Materials for Use in Concrete
,”
Cement and Concrete Research
153
(March
2022
): 106709, https://doi.org/10.1016/j.cemconres.2021.106709
15.
de Azevedo Basto
P.
,
Savastano
J.
 Jr.
, and
de Melo Neto
A. A.
, “
Characterization and Pozzolanic Properties of Sewage Sludge Ashes (SSA) by Electrical Conductivity
,”
Cement and Concrete Composites
104
(November
2019
): 103410, https://doi.org/10.1016/j.cemconcomp.2019.103410
16.
Bu
Y.
and
Weiss
J.
, “
The Influence of Alkali Content on the Electrical Resistivity and Transport Properties of Cementitious Materials
,”
Cement and Concrete Composites
51
(August
2014
):
49
58
, https://doi.org/10.1016/j.cemconcomp.2014.02.008
17.
Spragg
R.
,
Villani
C.
, and
Weiss
J.
, “
Electrical Properties of Cementitious Systems: Formation Factor Determination and the Influence of Conditioning Procedures
,”
Advances in Civil Engineering Materials
5
, no. 
1
(
2016
):
124
148
, https://doi.org/10.1520/ACEM20150035
18.
Layssi
H.
,
Ghods
P.
,
Alizadeh
A. R.
, and
Salehi
M.
, “
Electrical Resistivity of Concrete: Concepts, Applications, and Measurement Techniques
,”
Concrete International
37
(May
2015
):
41
46
.
19.
Moffatt
E. G.
,
Thomas
M. D. A.
, and
Fahim
A.
, “
Performance of High-Volume Fly Ash Concrete in Marine Environment
,”
Cement and Concrete Research
102
(December
2017
):
127
135
, https://doi.org/10.1016/j.cemconres.2017.09.008
20.
Moffatt
E. G.
and
Thomas
M. D. A.
, “
Performance of 25-Year-Old Silica Fume and Fly Ash Lightweight Concrete Blocks in a Harsh Marine Environment
,”
Cement and Concrete Research
113
(November
2018
):
65
73
, https://doi.org/10.1016/j.cemconres.2018.07.004
21.
Shehata
M. H.
and
Thomas
M. D. A.
, “
Use of Ternary Blends Containing Silica Fume and Fly Ash to Suppress Expansion due to Alkali–Silica Reaction in Concrete
,”
Cement and Concrete Research
32
, no. 
3
(March
2002
):
341
349
, https://doi.org/10.1016/S0008-8846(01)00680-9
22.
Shehata
M. H.
and
Thomas
M. D. A.
, “
The Effect of Fly Ash Composition on the Expansion of Concrete due to Alkali-Silica Reaction
,”
Cement and Concrete Research
30
, no. 
7
(July
2000
):
1063
1072
, https://doi.org/10.1016/S0008-8846(00)00283-0
23.
Shehata
M. H.
,
Thomas
M. D. A.
, and
Bleszynski
R. F.
, “
The Effect of Fly Composition on the Chemistry of Pore Solution
,”
Cement and Concrete Research
29
, no. 
12
(December
1999
):
1915
1920
, https://doi.org/10.1016/S0008-8846(99)00190-8
24.
Kalina
R. D.
,
Al-Shmaisani
S.
,
Seraj
S.
,
Cano
R.
,
Ferron
R. D.
, and
Juenger
M. C. G.
, “
Role of Alkalis in Natural Pozzolans on Alkali-Silica Reaction
,”
ACI Materials Journal
118
, no. 
3
(May
2021
):
83
89
.
25.
Shi
C.
,
Wu
Y.
,
Riefler
C.
, and
Wang
H.
, “
Characteristics and Pozzolanic Reactivity of Glass Powders
,”
Cement and Concrete Research
35
, no. 
5
(May
2005
):
987
993
, https://doi.org/10.1016/j.cemconres.2004.05.015
26.
Kaminsky
A.
,
Krstic
M.
,
Rangaraju
P.
,
Tagnit-Hamou
A.
, and
Thomas
M. D. A.
, “
Ground-Glass Pozzolan for Use in Concrete
,”
Concrete International
42
, no. 
11
(November
2020
):
24
32
.
27.
Afshinnia
K.
and
Rangaraju
P. R.
, “
Influence of Fineness of Ground Recycled Glass on Mitigation of Alkali–Silica Reaction in Mortars
,”
Construction and Building Materials
81
(April
2015
):
257
267
, https://doi.org/10.1016/j.conbuildmat.2015.02.041
28.
Shafaatian
S. M. H.
,
Wright
J. R.
, and
Rajabipour
F.
, “
Performance of Recycled Soda–Lime Glass Powder in Mitigating Alkali–Silica Reaction
,”
Green Materials
7
, no. 
1
(March
2019
):
28
39
, https://doi.org/10.1680/jgrma.18.00032
29.
Ke
G.
,
Li
W.
,
Li
R.
,
Li
Y.
, and
Wang
G.
, “
Mitigation Effect of Waste Glass Powders on Alkali–Silica Reaction (ASR) Expansion in Cementitious Composite
,”
International Journal of Concrete Structures and Materials
12
, no. 
1
(December
2018
): 67, https://doi.org/10.1186/s40069-018-0299-7
30.
Jain
J. A.
and
Neithalath
N.
, “
Chloride Transport in Fly Ash and Glass Powder Modified Concretes—Influence of Test Methods on Microstructure
,”
Cement and Concrete Composites
32
, no. 
2
(February
2010
):
148
156
, https://doi.org/10.1016/j.cemconcomp.2009.11.010
31.
Shi
C.
,
Wu
Y.
,
Shao
Y.
, and
Riefler
C.
, “
Alkali—Aggregate Reaction of Mortar Bars Ground Glass Powder
” (paper presentation, 12th International Conference on Alkali-Aggregate Reaction in Concrete, Beijing, China, October 15–19,
2004
).
32.
Thomas
M. D. A.
,
Fournier
B.
,
Folliard
K. J.
,
Shehata
M. H.
,
Ideker
J. H.
, and
Rogers
C.
, “
Performance Limits for Evaluating Supplementary Cementing Materials Using Accelerated Mortar Bar Test
,”
ACI Materials Journal
104
, no. 
2
(March
2007
):
115
122
.
33.
Hossack
A. H.
and
Thomas
M. D. A.
, “
The Effect of Temperature on the Rate of Sulfate Attack of Portland Cement Blended Mortars in Na2SO4 Solution
,”
Cement and Concrete Research
73
(July
2015
):
136
142
, https://doi.org/10.1016/j.cemconres.2015.02.024
34.
Ramlochan
T.
and
Thomas
M. D. A.
, “
The Effect of Metakaolin on External Sulphate Attack
,” in
Proceedings of the Fourth ACI/CANMET International Conference on the Durability of Concrete, ACI SP-192
, ed.
Malhotra
V. M.
(
Farmington Hills, MI
:
American Concrete Institute
,
2000
),
239
251
.
35.
Tiburzi
N. B.
,
Garcia
J.
,
Drimalas
T.
, and
Folliard
K. J.
, “
Sulfate Resistance of Portland-Limestone Cement Concrete Systems: Linking Laboratory and Field Performances
,”
Construction and Building Materials
250
(July
2020
): 118750, https://doi.org/10.1016/j.conbuildmat.2020.118750
36.
Rashidian-Dezfouli
H.
and
Rangaraju
P. R.
, “
Evaluation of Selected Durability Properties of Portland Cement Concretes Containing Ground Glass Fiber as a Pozzolan
,”
Transportation Research Record: Journal of the Transportation Research Board
2672
, no. 
27
(May
2018
):
88
98
, https://doi.org/10.1177/0361198118773198
37.
Seraj
S.
,
Juenger
M. C. G.
, and
Ferron
R. P.
, “
Evaluating Natural Pozzolans for Use as Alternative Supplementary Cementitious Materials in Concrete
” (PhD diss.,
University of Texas at Austin
, Austin, TX,
2014
).
38.
Espinoza-Hijazin
G.
,
Paul
A.
, and
Lopez
M.
, “
Concrete Containing Natural Pozzolans: New Challenges for Internal Curing
,”
Journal of Materials in Civil Engineering
24
, no. 
8
(August
2012
):
981
988
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000421
39.
He
C.
,
Osbæck
B.
, and
Makovicky
E.
, “
Pozzolanic Reactions of Six Principal Clay Minerals: Activation, Reactivity Assessments and Technological Effects
,”
Cement and Concrete Research
25
, no. 
8
(December
1995
):
1691
1702
, https://doi.org/10.1016/0008-8846(95)00165-4
40.
Bagheria
M.
,
Lothenbach
B.
,
Shakoorioskooie
M.
, and
Scrivener
K.
, “
Effect of Different Ions on Dissolution Rates of Silica and Feldspars at High pH
,”
Cement and Concrete Research
152
(February
2022
): 106644, https://doi.org/10.1016/j.cemconres.2021.106644
41.
Lothenbach
B.
,
Durdziński
P.
, and
De Weerdt
K.
, “
Thermogravimetry Analysis
,” in
A Practical Guide to Microstructural Analysis of Cementitious Materials
, ed.
Scrivener
K.
,
Snellings
R.
, and
Lothenbach
B.
(
Boca Raton, FL
:
CRC Press
,
2016
),
178
211
.
42.
McCarthy
M. C.
and
Dyer
T. D.
, “
Pozzolana and Pozzolanic Materials
,” in
Lea’s Chemistry of Cement and Concrete
, ed.
Hewlett
P. C.
and
Liska
M.
(
Oxford, UK
:
Butterwoth-Heinemann
,
2019
),
363
467
.
43.
Mehta
P. K.
, “
Natural Pozzolans
,” in
Supplementary Cementing Materials for Concrete, CANMET-SP-86-8E
, ed.
Malhotra
V. M.
(
Ottawa, Canada
:
Canadian Government Publishing Center, Supply and Services
,
1987
),
1
33
.
44.
Pepper
L.
and
Bryant
M.
,
Effectiveness of Mineral Admixtures in Preventing Excessive Expansion of Concrete due to Alkali-Aggregate Reaction
(
Vicksburg, MS
:
US Army Engineer Waterways Experiment Station, Corps of Engineers
,
1958
).
45.
Hong
S.-Y.
and
Glasser
F. P.
, “
Alkali Sorption by C-S-H and C-A-S-H Gels: Part II. Role of Alumina
,”
Cement and Concrete Research
32
, no. 
7
(July
2002
):
1101
1111
, https://doi.org/10.1016/S0008-8846(02)00753-6
46.
Yan
Y.
,
Yang
S.
,
Miron
G. D.
,
Collings
I. E.
,
L’Hôpital
E.
,
Skibsted
J.
,
Winnefeld
F.
,
Scrivener
K.
, and
Lothenbach
B.
, “
Effect of Alkali Hydroxide on Calcium Silicate Hydrate (C-S-H)
,”
Cement and Concrete Research
151
(January
2022
): 106636, https://doi.org/10.1016/j.cemconres.2021.106636
47.
Thomas
M.
, “
The Effect of Supplementary Cementing Materials on Alkali-Silica Reaction: A Review
,”
Cement and Concrete Research
41
, no. 
12
(December
2011
):
1224
1231
, https://doi.org/10.1016/j.cemconres.2010.11.003
48.
Thomas
M. D. A.
,
Smith
D.
,
Moffatt
E. G.
, and
Kasaniya
M.
, “
The Use of Ground Glass as a Pozzolan
,” in
SP-349: 11th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete
(
Farmington Hills, MI
:
American Concrete Institute
,
2021
).
49.
Pigeon
M.
,
Gagné
R.
, and
Foy
C.
, “
Critical Air-Void Spacing Factors for Low Water-Cement Ratio Concretes with and without Condensed Silica Fume
,”
Cement and Concrete Research
17
, no. 
6
(November
1987
):
896
906
, https://doi.org/10.1016/0008-8846(87)90078-0
50.
Krstic
M.
,
Davalos
J. F.
,
Rossi
E.
,
Figueiredo
S. C.
, and
Copuroglu
O.
, “
Freeze–Thaw Resistance and Air-Void Analysis of Concrete with Recycled Glass–Pozzolan Using X-ray Micro-Tomography
,”
Materials
14
, no. 
1
(December
2020
): 154, https://doi.org/10.3390/ma14010154
51.
Tagnit-Hamou
A.
,
Petrov
N.
, and
Luke
K.
, “
Properties of Concrete Containing Diatomaceous Earth
,”
ACI Materials Journal
100
, no. 
1
(January
2003
):
73
78
.
52.
Christodoulou
G.
, “
A Comparative Study of the Effects of Silica Fume, Metakaolin and PFA on the Air Content of Fresh Concrete
” (paper presentation, Young Researcher’s Forum, London, UK, April 27,
2000
).
53.
Wang
Y.
,
Burris
L.
,
Shearer
C. R.
,
Hooton
D.
, and
Suraneni
P.
, “
Strength Activity Index and Bulk Resistivity Index Modifications that Differentiate Inert and Reactive Materials
,”
Cement and Concrete Composites
124
(November
2021
): 104240, https://doi.org/10.1016/j.cemconcomp.2021.104240
54.
Bu
Y.
and
Weiss
J.
, “
The Influence of Alkali Content on the Electrical Resistivity and Transport Properties of Cementitious Materials
,”
Cement and Concrete Composites
51
(August
2014
):
49
58
, https://doi.org/10.1016/j.cemconcomp.2014.02.008
55.
Layssi
H.
,
Ghods
P.
,
Alizadeh
A. R.
, and
Salehi
M.
, “
Electrical Resistivity of Concrete
,”
Concrete International
37
(
2015
):
41
46
.
56.
Al-Shmaisani
S.
, “
Assessing Supplementary Cementitious Materials for Use in Concrete: Long-Term and Rapid Testing
” (PhD diss.,
University of Texas at Austin,
2020
).
57.
Liu
Y.
and
Presuel-Moreno
F.
, “
Effect of Elevated Temperature Curing on Compressive Strength and Electrical Resistivity of Concrete with Fly Ash and Ground-Granulated Blast-Furnace Slag
,”
ACI Materials Journal
111
, no. 
5
(September
2014
):
531
542
.
58.
Chopperla
K. S. T.
and
Ideker
J. H.
, “
Using Electrical Resistivity to Determine the Efficiency of Supplementary Cementitious Materials to Prevent Alkali-Silica Reaction in Concrete
,”
Cement and Concrete Composites
125
(January
2022
): 104282, https://doi.org/10.1016/j.cemconcomp.2021.104282
This content is only available via PDF.
You do not currently have access to this content.