Abstract

The shortage of conventional supplementary cementitious materials opens up the prospect for broader utilization of nontraditional and natural pozzolans (NNPs). The NNPs used in the study included three calcined clays, three volcanic ashes (also referred to as natural pozzolans), three ground bottom ashes, and two fluidized bed combustion ashes. The study focused on assessment of the performance of these NNPs in portland cement systems by evaluating the following parameters: (a) development of the heat of reaction in cement pastes containing 25, 30, and 35 % of NNPs by weight of cement (bwoc) by means of isothermal calorimetry; (b) measurement of the consumption of calcium hydroxide (CH) in cement pastes containing 0, 25, 30, 35, 40, and 45 % (bwoc) of NNPs after 7, 28, and 56 days of curing using thermogravimetric analysis technique; (c) determination and quantification of the reaction products by quantitative x-ray diffraction in cement pastes containing 0 and 25 % (bwoc) of NNPs after 7, 28, and 56 days of curing; and (d) measurement of the 7- and 28-day compressive strength of mortar cubes. In all cases, the cumulative heat values of pastes containing NNPs were higher than those of reference pastes containing inert fillers, confirming that all NNPs were undergoing pozzolanic reaction. For most of the NNPs, the highest amount of CH consumed was observed in systems with 35 % replacement level. The early-age CH consumption correlated well with the content of alumina in NNPs whereas the later-age data correlated better with the silica content of the NNPs. In terms of compressive strength development, the highest early-age values were observed in mortars containing calcined clays, whereas other NNPs contributed to strength development at latter ages.

References

1.
CEMBUREAU Activity Report 2020
(
Brussels, Belgium
:
CEMBUREAU
,
2020
).
2.
IEA “
Cement
,”
2021
, https://perma.cc/UPG3-RHDD
3.
Chen
C.
,
Habert
G.
,
Bouzidi
Y.
, and
Jullien
A.
, “
Environmental Impact of Cement Production: Detail of the Different Processes and Cement Plant Variability Evaluation
,”
Journal of Cleaner Production
18
, no. 
5
(
2010
):
478
485
, https://doi.org/10.1016/j.jclepro.2009.12.014
4.
Andrew
R. M.
, “
Global CO2 Emissions from Cement Production, 1928–2017
,”
Earth System Science Data
10
, no. 
4
(
2018
):
2213
2239
, https://doi.org/10.5194/essd-10-2213-2018
5.
Favier
A.
,
de Wolf
C.
,
Scrivener
K.
, and
Habert
G.
,
A Sustainable Future for the European Cement and Concrete Industry: Technology Assessment for Full Decarbonisation of the Industry by 2050
(
Zürich, Switzerland
:
ETH Zürich
,
2018
).
6.
Global Cement and Concrete Association “
Concrete Future: The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete
,”
2022
, https://perma.cc/SK5B-PNSJ
7.
Portland Cement Association “
Roadmap to Carbon Neutrality
,” https://perma.cc/KK2A-U2C2
8.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
, ASTM C618-19 (West Conshohocken, PA:
ASTM International
, approved January 1,
2019
), https://doi.org/10.1520/C0618-19
9.
Black
A. P.
,
Production and Use of Coal Combustion Products in the US. Market Forecast through 2033
(
Washington, DC
:
American Road and Transportation Builders Association (ARTBA)
;
Denver, CO
:
American Coal Ash Association (ACAA)
,
2015
).
10.
Eco-efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry
(
Nairobi, Kenya
:
United Nations Environment Programme
,
2017
), https://perma.cc/36CB-QP4A
11.
Antoni
M.
,
Rossen
J.
,
Martirena
F.
, and
Scrivener
K.
, “
Cement Substitution by a Combination of Metakaolin and Limestone
,”
Cement and Concrete Research
42
, no. 
12
(
2012
):
1579
1589
, https://doi.org/10.1016/j.cemconres.2012.09.006
12.
Scrivener
K.
,
Martirena
F.
,
Bishnoi
S.
, and
Maity
S.
, “
Calcined Clay Limestone Cements (LC3)
,”
Cement and Concrete Research
114
(December
2018
):
49
56
, https://doi.org/10.1016/j.cemconres.2017.08.017
13.
Krishnan
S.
,
Gopala Rao
D.
, and
Bishnoi
S.
, “
Why Low-Grade Calcined Clays Are the Ideal for the Production of Limestone Calcined Clay Cement (LC3)
,” in
Calcined Clays for Sustainable Concrete
, ed.
Bishnoi
S.
(
Singapore
:
Springer
,
2020
),
125
130
, https://doi.org/10.1007/978-981-15-2806-4_14
14.
Krishnan
S.
and
Bishnoi
S.
, “
Understanding the Hydration of Dolomite in Cementitious Systems with Reactive Aluminosilicates Such as Calcined Clay
,”
Cement and Concrete Research
108
(June
2018
):
116
128
, https://doi.org/10.1016/j.cemconres.2018.03.010
15.
Jafari
K.
and
Rajabipour
F.
, “
Performance of Impure Calcined Clay as a Pozzolan in Concrete
,”
Transportation Research Record: Journal of the Transportation Research Board
2675
, no. 
2
(
2020
):
98
107
, https://doi.org/10.1177%2F0361198120953140
16.
Sabir
B. B.
,
Wild
S.
, and
Bai
J.
, “
Metakaolin and Calcined Clays as Pozzolans for Concrete: A Review
,”
Cement and Concrete Composites
23
, no. 
6
(
2001
):
441
454
, https://doi.org/10.1016/S0958-9465(00)00092-5
17.
Cordoba
G. P.
,
Zito
S. V.
,
Sposito
R.
,
Rahhal
V. F.
,
Tironi
A.
,
Thienel
C.
, and
Irassar
E. G.
, “
Concretes with Calcined Clay and Calcined Shale: Workability, Mechanical, and Transport Properties
,”
Journal of Materials in Civil Engineering
32
, no. 
8
(
2020
): 04020224, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003296
18.
Bucher
R.
,
Diederich
P.
,
Mouret
M.
,
Escadeillas
G.
, and
Cyr
M.
, “
Self-Compacting Concrete Using Flash-Metakaolin: Design Method
,”
Materials and Structures
48
, no. 
6
(
2015
):
1717
1737
, https://doi.org/10.1617/s11527-014-0267-x
19.
Gmür
R.
,
Thienel
K.-C.
, and
Beuntner
N.
, “
Influence of Aging Conditions upon the Properties of Calcined Clay and Its Performance as Supplementary Cementitious Material
,”
Cement and Concrete Composites
72
(September
2016
):
114
124
, https://doi.org/10.1016/j.cemconcomp.2016.05.020
20.
Joshaghani
A.
,
Moeini
M. A.
, and
Balapour
M.
, “
Evaluation of Incorporating Metakaolin to Evaluate Durability and Mechanical Properties of Concrete
,”
Advances in Concrete Construction
5
, no. 
3
(
2017
):
241
255
, https://doi.org/10.12989/acc.2017.5.3.241
21.
Schulze
S. E.
and
Rickert
J.
, “
Suitability of Natural Calcined Clays as Supplementary Cementitious Material
,”
Cement and Concrete Composites
95
(January
2019
):
92
97
, https://doi.org/10.1016/j.cemconcomp.2018.07.006
22.
Játiva
A.
,
Ruales
E.
, and
Etxeberria
M.
, “
Volcanic Ash as a Sustainable Binder Material: An Extensive Review
,”
Materials
14
, no. 
5
(
2021
): 1302, https://doi.org/10.3390%2Fma14051302
23.
Kupwade-Patil
K.
,
Al-Aibani
A. F.
,
Abdulsalam
M. F.
,
Mao
C.
,
Bumajdad
A.
,
Palkovic
S. D.
, and
Büyüköztürk
O.
, “
Microstructure of Cement Paste with Natural Pozzolanic Volcanic Ash and Portland Cement at Different Stages of Curing
,”
Construction and Building Materials
113
(June
2016
):
423
441
, https://doi.org/10.1016/j.conbuildmat.2016.03.084
24.
Kupwade-Patil
K.
,
De Wolf
C.
,
Chin
S.
,
Ochsendorf
J.
,
Hajiah
A. E.
,
Al-Mumin
A.
, and
Büyüköztürk
O.
, “
Impact of Embodied Energy on Materials/Buildings with Partial Replacement of Ordinary Portland Cement (OPC) by Natural Pozzolanic Volcanic Ash
,”
Journal of Cleaner Production
177
(March
2018
):
547
554
, https://doi.org/10.1016/j.jclepro.2017.12.234
25.
Anwar Hossain
K. M.
, “
High Strength Blended Cement Concrete Incorporating Volcanic Ash: Performance at High Temperatures
,”
Cement and Concrete Composites
28
, no. 
6
(
2006
):
535
545
, https://doi.org/10.1016/j.cemconcomp.2006.01.013
26.
Siddique
R.
, “
Properties of Concrete Made with Volcanic Ash
,”
Resources, Conservation and Recycling
66
(September
2012
):
40
44
, https://doi.org/10.1016/j.resconrec.2012.06.010
27.
Feuerborn
H.-J.
, “
Coal Ash Utilisation over the World and in Europe
” (
paper presentation, Workshop on Environmental and Health Aspects of Coal Ash Utilization International
,
Tel-Aviv, Israel
, November 23–24,
2005
), https://perma.cc/C5NW-VPJB
28.
Zahedi
M.
and
Rajabipour
F.
, “
Fluidized Bed Combustion (FBC) Fly Ash and Its Performance in Concrete
,”
ACI Materials Journal
116
, no. 
4
(
2019
):
163
172
, https://doi.org/10.14359/51716720
29.
Gazdič
D.
,
Fridrichová
M.
,
Kulísek
K.
, and
Vehovská
L.
, “
The Potential Use of the FBC Ash for the Preparation of Blended Cements
,”
Procedia Engineering
180
(
2017
):
1298
1305
, https://doi.org/10.1016/j.proeng.2017.04.292
30.
Havlica
J.
,
Brandstetr
J.
, and
Odler
I.
, “
Possibilities of Utilizing Solid Residues from Pressured Fluidized Bed Coal Combustion (PSBC) for the Production of Blended Cements
,”
Cement and Concrete Research
28
, no. 
2
(
1998
):
299
307
, https://doi.org/10.1016/S0008-8846(97)00258-5
31.
Siddique
R.
, “
Utilization of Coal Combustion By-Products in Sustainable Construction Materials
,”
Resources, Conservation and Recycling
54
, no. 
12
(
2010
):
1060
1066
, https://doi.org/10.1016/j.resconrec.2010.06.011
32.
Klein
R.
,
Baumann
T.
,
Kahapka
E.
, and
Niessner
R.
, “
Temperature Development in a Modern Municipal Solid Waste Incineration (MSWI) Bottom Ash Landfill with Regard to Sustainable Waste Management
,”
Journal of Hazardous Materials
83
, no. 
3
(May
2001
):
265
280
, https://doi.org/10.1016/S0304-3894(01)00188-1
33.
Argiz
C.
,
Sanjuán
M. Á.
, and
Menéndez
E.
, “
Coal Bottom Ash for Portland Cement Production
,”
Advances in Materials Science and Engineering
2017 (
2017
): 6068286, https://doi.org/10.1155/2017/6068286
34.
Singh
M.
and
Siddique
R.
, “
Strength Properties and Micro-Structural Properties of Concrete Containing Coal Bottom Ash as Partial Replacement of Fine Aggregate
,”
Construction and Building Materials
50
(January
2014
):
246
256
, https://doi.org/10.1016/j.conbuildmat.2013.09.026
35.
Cheriaf
M.
,
Rocha
J. C.
, and
Péra
J.
, “
Pozzolanic Properties of Pulverized Coal Combustion Bottom Ash
,”
Cement and Concrete Research
29
, no. 
9
(
1999
):
1387
1391
, https://doi.org/10.1016/S0008-8846(99)00098-8
36.
Ali Mangi
S.
,
Wan Ibrahim
M. H.
,
Jamaluddin
N.
,
Arshad
M. F.
, and
Ramadhansyah
P. J.
, “
Effects of Ground Coal Bottom Ash on the Properties of Concrete
,”
Journal of Engineering Science and Technology
14
, no. 
1
(
2019
):
338
350
.
37.
Jaturapitakkul
C.
and
Cheerarot
R.
, “
Development of Bottom Ash as Pozzolanic Material
,”
Journal of Materials in Civil Engineering
15
, no. 
1
(
2003
):
48
53
, https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(48)
38.
Oruji
S.
,
Brake
N. A.
,
Nalluri
L.
, and
Guduru
R. K.
, “
Strength Activity and Microstructure of Blended Ultra-Fine Coal Bottom Ash-Cement Mortar
,”
Construction and Building Materials
153
(October
2017
):
317
326
, https://doi.org/10.1016/j.conbuildmat.2017.07.088
39.
Mangi
S. A.
,
Wan Ibrahim
M. H.
,
Jamaluddin
N.
,
Arshad
M. F.
, and
Shahidan
S.
, “
Performances of Concrete Containing Coal Bottom Ash with Different Fineness as a Supplementary Cementitious Material Exposed to Seawater
,”
Engineering Science and Technology, an International Journal
22
, no. 
3
(June
2019
):
929
938
, https://doi.org/10.1016/j.jestch.2019.01.011
40.
Yoon
J.
,
Jafari
K.
,
Tokpatayeva
R.
,
Peethamparam
S.
,
Olek
J.
, and
Rajabipour
F.
, “
Characterization and Quantification of the Pozzolanic Reactivity of Natural and Non-conventional Pozzolans
,”
Cement and Concrete Composites
133
(October): 104708, https://doi.org/10.1016/j.cemconcomp.2022.104708.
41.
Section 904 – Aggregates
,” in
Standard Specifications
(
Indianapolis, IN
:
Indiana Department of Transportation
,
2020
),
942
956
.
42.
Zhang
J.
and
Scherer
G. W.
, “
Comparison of Methods for Arresting Hydration of Cement
,”
Cement and Concrete Research
41
, no. 
10
(
2011
):
1024
1036
, https://doi.org/10.1016/j.cemconres.2011.06.003
43.
Scrivener
K.
,
Snellings
R.
, and
Lothenbach
B.
, eds.,
A Practical Guide to Microstructural Analysis of Cementitious Materials
(
Boca Raton, FL
:
CRC Press
,
2016
).
44.
Kim
T.
and
Olek
J.
, “
Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars
,”
Transportation Research Record: Journal of the Transportation Research Board
2290
, no. 
1
(
2012
):
10
18
, https://doi.org/10.3141%2F2290-02
45.
Snellings
R.
,
Chwast
J.
,
Cizer
Ö.
,
De Belie
N.
,
Dhandapani
Y.
,
Durdzinski
P.
,
Elsen
J.
, et al., “
RILEM TC-238 SCM Recommendation on Hydration Stoppage by Solvent Exchange for the Study of Hydrate Assemblages
,”
Materials and Structures
51
, no. 
6
(
2018
): 172.
46.
Maciel
M. H.
,
Soares
G. S.
,
Romano
R.C. d. O.
, and
Cincotto
M. A.
, “
Monitoring of Portland Cement Chemical Reaction and Quantification of the Hydrated Products by XRD and TG in Function of the Stoppage Hydration Technique
,”
Journal of Thermal Analysis and Calorimetry
136
, no. 
3
(
2019
):
1269
1284
, https://doi.org/10.1007/s10973-018-7734-5
47.
Kang
S.-H.
,
Jeong
Y.
,
Kim
M. O.
, and
Moon
J.
, “
Pozzolanic Reaction on Alkali-Activated Class F Fly Ash for Ambient Condition Curable Structural Materials
,”
Construction and Building Materials
218
(September
2019
):
235
244
, https://doi.org/10.1016/j.conbuildmat.2019.05.129
48.
Snellings
R.
,
Salze
A.
, and
Scrivener
K. L.
, “
Use of X-ray Diffraction to Quantify Amorphous Supplementary Cementitious Materials in Anhydrous and Hydrated Blended Cements
,”
Cement and Concrete Research
64
(October
2014
):
89
98
, https://doi.org/10.1016/j.cemconres.2014.06.011
49.
Berodier
E.
and
Scrivener
K.
, “
Understanding the Filler Effect on the Nucleation and Growth of C‐S‐H
,”
Journal of the American Ceramic Society
97
, no. 
12
(
2014
):
3764
3773
, https://doi.org/10.1111/jace.13177
50.
Westphal
T.
,
Füllmann
T.
, and
Pöllmann
H.
, “
Rietveld Quantification of Amorphous Portions with an Internal Standard—Mathematical Consequences of the Experimental Approach
,”
Powder Diffraction
24
, no. 
3
(
2009
):
239
243
, https://doi.org/10.1154/1.3187828
51.
Dittrich
S.
,
Neubauer
J.
, and
Goetz-Neunhoeffer
F.
, “
The Influence of Fly Ash on the Hydration of OPC within the First 44 h—A Quantitative In Situ XRD and Heat Flow Calorimetry Study
,”
Cement and Concrete Research
56
(February
2014
):
129
138
, https://doi.org/10.1016/j.cemconres.2013.11.013
52.
Dhandapani
Y.
,
Santhanam
M.
,
Kaladharan
G.
, and
Ramanathan
S.
, “
Towards Ternary Binders Involving Limestone Additions—A Review
,”
Cement and Concrete Research
143
(May
2021
): 106396, https://doi.org/10.1016/j.cemconres.2021.106396s
53.
Matschei
T.
,
Lothenbach
B.
, and
Glasser
F. P.
, “
The Role of Calcium Carbonate in Cement Hydration
,”
Cement and Concrete Research
37
, no. 
4
(
2007
):
551
558
, https://doi.org/10.1016/j.cemconres.2006.10.013
54.
Li
X.
,
Snellings
R.
,
Antoni
M.
,
Alderete
N. M.
,
Haha
M. B.
,
Bishnoi
S.
,
Cizer
Ö.
, et al. “
Reactivity Tests for Supplementary Cementitious Materials: RILEM TC 267-TRM Phase 1
,”
Materials and Structures
51
, no. 
6
(
2018
): 151, https://doi.org/10.1617/s11527-018-1269-x
55.
Suraneni
P.
,
Hajibabaee
A.
,
Ramanathan
S.
,
Wang
Y.
, and
Weiss
J.
, “
New Insights from Reactivity Testing of Supplementary Cementitious Materials
,”
Cement and Concrete Composites
103
(October
2019
):
331
338
, https://doi.org/10.1016/j.cemconcomp.2019.05.017
56.
Ramanathan
S.
,
Kasaniya
M.
,
Tuen
M.
,
Thomas
M. D. A.
, and
Suraneni
P.
, “
Linking Reactivity Test Outputs to Properties of Cementitious Pastes Made with Supplementary Cementitious Materials
,”
Cement and Concrete Composites
114
(November
2020
): 103742, https://doi.org/10.1016/j.cemconcomp.2020.103742
57.
Ali
H. A.
,
Xuan
D.
, and
Poon
C. S.
, “
Assessment of Long-Term Reactivity of Initially Lowly-Reactive Solid Wastes as Supplementary Cementitious Materials (SCMs)
,”
Construction and Building Materials
232
(January
2020
): 117192, https://doi.org/10.1016/j.conbuildmat.2019.117192
This content is only available via PDF.
You do not currently have access to this content.