Abstract

Hypersaline brines can be solidified and stabilized via the hydraulic and pozzolanic reactions between fly ash(es) and calcium-based additives. Although recent work has examined fly ash reactivity in single-salt (“simple”) hypersaline brines (ionic strength, Im > 1 mol/L), the effects of mixed-salt solutions on fly ash reactivity remain unclear. Herein, the reactivity of a Class C (calcium oxide [CaO]-rich) or Class F (CaO-poor) fly ash mixture with calcium hydroxide is reacted in solutions bearing sodium chloride (NaCl), calcium chloride (CaCl2), magnesium chloride (MgCl2), sodium sulfate (Na2SO4), or combinations thereof for 1.5 ≤ Im ≤ 2.25 mol/L, from 1 week until 24 weeks. Expectedly, sulfate anions promote the formation of sulfate phases (i.e., ettringite, monosulfoaluminate, U-phase), while chloride anions induce the formation of Cl-AFm compounds (i.e., Kuzel’s and Friedel’s salt). Although the Class C fly ash’s reactivity is similar across different anions (for a fixed cation and Im), Class F fly ash shows a small change in reactivity depending on the anion present. NaCl suppresses (Class C and Class F) fly ash reactivity by up to 30 % as compared to neat CaCl2 and MgCl2-based brines. Thermodynamic modeling reveals that NaCl induces a considerable increase in pH—up to 13.7, where many hydrated phases of interest cease to be the major phase expected—as compared to CaCl2 and MgCl2 brines (pH < 13). In mixed-salt brines, anion immobilization is competitive: sulfate achieves a greater level of incorporation into the hydrates, as compared to chloride. These results offer new understanding of how the brine composition affects solidification and stabilization and thereby yield new insight into improved approaches for wastewater disposal.

References

1.
Borch
T.
,
Dionysiou
D. D.
,
Katz
L.
,
Xu
P.
,
Bandhauer
T.
,
Breckenridge
R.
,
Chae
S. R.
, et al.,
National Alliance for Water Innovation (NAWI) Technology Roadmap: Agriculture Sector, DOE/GO-102021-5562
(
Berkeley, CA
:
National Alliance for Water Innovation
,
2021
).
2.
Cath
T.
,
Chellam
S.
,
Katz
L.
,
Breckenridge
R.
,
Cooper
C.
,
Ellison
K.
,
Macknick
J.
, et al.,
National Alliance for Water Innovation (NAWI) Technology Roadmap: Resource Extraction Sector, DOE/GO-102021-5567
(
Berkeley, CA
:
National Alliance for Water Innovation
,
2021
).
3.
Cath
T.
,
Chellam
S.
,
Katz
L.
,
Kim
J.
,
Breckenridge
R.
,
Macknick
J.
,
Meese
A.
, et al.,
National Alliance for Water Innovation (NAWI) Technology Roadmap: Industrial Sector, DOE/GO-102021-5562
(
Berkeley, CA
:
National Alliance for Water Innovation
,
2021
).
4.
Childress
A.
,
Giammar
D.
,
Jiang
S.
,
Breckenridge
R.
,
Howell
A.
,
Macknick
J.
,
Plata
S.
,
Sedlak
D.
, and
Stokes-Draut
J.
,
National Alliance for Water Innovation (NAWI) Technology Roadmap: Power Sector, DOE/GO-102021-556
(
Berkeley, CA
:
National Alliance for Water Innovation
,
2021
).
5.
Giammar
D.
,
Jiang
S.
,
Xu
P.
,
Breckenridge
R.
,
Edirisooriya
T.
,
Jiang
W.
,
Lin
L.
, et al.,
National Alliance for Water Innovation (NAWI) Technology Roadmap: Municipal Sector, DOE/GO-102021-5565
(
Berkeley, CA
:
National Alliance for Water Innovation
,
2021
).
6.
Renew
J. E.
,
Huang
C.-H.
,
Burns
S. E.
,
Carasquillo
M.
,
Sun
W.
, and
Ellison
K. M.
, “
Immobilization of Heavy Metals by Solidification/Stabilization of Co-disposed Flue Gas Desulfurization Brine and Coal Fly Ash
,”
Energy Fuels
30
, no. 
6
(June
2016
):
5042
5051
, https://doi.org/10.1021/acs.energyfuels.6b00321
7.
Huang
C.-H.
,
Renew
J. E.
, and
Zhang
W.
,
Mineralogy Optimization for Metal and Chloride Immobilization in Co-disposed Flue Gas Desulfurization Brines and Bituminous Coal Fly Ash
(
Raleigh, NC
:
Environmental Research and Education Foundation
,
2019
).
8.
Gougar
M. L. D.
,
Scheetz
B. E.
, and
Roy
D. M.
, “
Ettringite and C-S-H Portland Cement Phases for Waste Ion Immobilization: A Review
,”
Waste Management
16
, no. 
4
(
1996
):
295
303
, https://doi.org/10.1016/S0956-053X(96)00072-4
9.
Piekkari
K.
,
Ohenoja
K.
,
Isteri
V.
,
Tanskanen
P.
, and
Illikainen
M.
, “
Immobilization of Heavy Metals, Selenate, and Sulfate from a Hazardous Industrial Side Stream by Using Calcium Sulfoaluminate-Belite Cement
,”
Journal of Cleaner Production
258
(June
2020
): 120560, https://doi.org/10.1016/j.jclepro.2020.120560
10.
Van Jaarsveld
J. G. S.
,
Van Deventer
J. S. J.
, and
Lorenzen
L.
, “
The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals: Part I. Theory and Applications
,”
Minerals Engineering
10
, no. 
7
(July
1997
):
659
669
, https://doi.org/10.1016/S0892-6875(97)00046-0
11.
Glasser
F. P.
, “
Fundamental Aspects of Cement Solidification and Stabilisation
,”
Journal of Hazardous Materials
52
, nos. 
2–3
(April
1997
):
151
170
, https://doi.org/10.1016/S0304-3894(96)01805-5
12.
Okoronkwo
M. U.
,
Balonis
M.
,
Katz
L.
,
Juenger
M.
, and
Sant
G.
, “
A Thermodynamics-Based Approach for Examining the Suitability of Cementitious Formulations for Solidifying and Stabilizing Coal-Combustion Wastes
,”
Journal of Environmental Management
217
(July
2018
):
278
287
, https://doi.org/10.1016/j.jenvman.2018.02.095
13.
Kogbara
R. B.
,
Al-Tabbaa
A.
, and
Stegemann
J. A.
, “
Comparisons of Operating Envelopes for Contaminated Soil Stabilised/Solidified with Different Cementitious Binders
,”
Environmental Science and Pollution Research
21
, no. 
5
(March
2014
):
3395
3414
, https://doi.org/10.1007/s11356-013-2276-7
14.
U.S. Environmental Protection Agency
Waste and Materials - Flow Benchmark Sector Report: Beneficial Use of Secondary Materials - Coal Combustion Products
(
Washington, DC
:
U.S. Environmental Protection Agency
,
2008
).
15.
Ellison
K.
,
Yeboah
N.
, and
Pretorius
C.
, “
Brine-Encapsulation Bench & Field Testing Recommendations
” (paper presentation, 2017 World of Coal Ash Conference, Lexington, KY, May 9–11,
2017
).
16.
Feng
P.
,
Miao
C.
, and
Bullard
J. W.
, “
Factors Influencing the Stability of AFm and AFt in the Ca–Al–S–O–H System at 25°C
,”
Journal of the American Ceramic Society
99
, no. 
3
(March
2016
):
1031
1041
, https://doi.org/10.1111/jace.13971
17.
Christensen
A. N.
,
Jensen
T. R.
, and
Hanson
J. C.
, “
Formation of Ettringite, Ca6Al2(SO4)3(OH)12·26H2O, AFt, and Monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in Hydrothermal Hydration of Portland Cement and of Calcium Aluminum Oxide—Calcium Sulfate Dihydrate Mixtures Studied by In Situ Synchrotron X-ray Powder Diffraction
,”
Journal of Solid State Chemistry
177
, no. 
6
(June
2004
):
1944
1951
, https://doi.org/10.1016/j.jssc.2003.12.030
18.
Rajasekaran
G.
, “
Sulphate Attack and Ettringite Formation in the Lime and Cement Stabilized Marine Clays
,”
Ocean Engineering
32
, nos. 
8–9
(June
2005
):
1133
1159
, https://doi.org/10.1016/j.oceaneng.2004.08.012
19.
Balonis
M.
,
Lothenbach
B.
,
Le Saout
G.
, and
Glasser
F. P.
, “
Impact of Chloride on the Mineralogy of Hydrated Portland Cement Systems
,”
Cement and Concrete Research
40
, no. 
7
(July
2010
):
1009
1022
, https://doi.org/10.1016/j.cemconres.2010.03.002
20.
Mesbah
A.
,
François
M.
,
Cau-dit-Coumes
C.
,
Frizon
F.
,
Filinchuk
Y.
,
Leroux
F.
,
Ravaux
J.
, and
Renaudin
G.
, “
Crystal Structure of Kuzel’s Salt 3CaO·Al2O3·1/2CaSO4·1/2CaCl2·11H2O Determined by Synchrotron Powder Diffraction
,”
Cement and Concrete Research
41
, no. 
5
(May
2011
):
504
509
, https://doi.org/10.1016/j.cemconres.2011.01.015
21.
Jeon
D.
,
Yum
W. S.
,
Jeong
Y.
, and
Oh
J. E.
, “
Properties of Quicklime(CaO)-Activated Class F Fly Ash with the Use of CaCl2
,”
Cement and Concrete Research
111
(September
2018
):
147
156
, https://doi.org/10.1016/j.cemconres.2018.05.019
22.
Glasser
F. P.
,
Kindness
A.
, and
Stronach
S. A.
, “
Stability and Solubility Relationships in AFm Phases: Part I. Chloride, Sulfate and Hydroxide
,”
Cement and Concrete Research
29
, no. 
6
(June
1999
):
861
866
, https://doi.org/10.1016/S0008-8846(99)00055-1
23.
Birnin-Yauri
U. A.
and
Glasser
F. P.
, “
Friedel’s Salt, Ca2Al(OH)6(Cl,OH)·2H2O: Its Solid Solutions and Their Role in Chloride Binding
,”
Cement and Concrete Research
28
, no. 
12
(December
1998
):
1713
1723
, https://doi.org/10.1016/S0008-8846(98)00162-8
24.
Hirao
H.
,
Yamada
K.
,
Takahashi
H.
, and
Zibara
H.
, “
Chloride Binding of Cement Estimated by Binding Isotherms of Hydrates
,”
Journal of Advanced Concrete Technology
3
, no. 
1
(
2005
):
77
84
, https://doi.org/10.3151/jact.3.77
25.
Gégout
P.
,
Revertégat
E.
, and
Moine
G.
, “
Action of Chloride Ions on Hydrated Cement Pastes: Influence of the Cement Type and Long Time Effect of the Concentration of Chlorides
,”
Cement and Concrete Research
22
, nos. 
2–3
(March-May
1992
):
451
457
, https://doi.org/10.1016/0008-8846(92)90088-D
26.
Beaudoin
J. J.
,
Ramachandran
V. S.
, and
Feldman
R. F.
, “
Interaction of Chloride and C-S-H
,”
Cement and Concrete Research
20
, no. 
6
(November
1990
):
875
883
, https://doi.org/10.1016/0008-8846(90)90049-4
27.
Collin
M.
,
Prentice
D. P.
,
Arnold
R. A.
,
Ellison
K.
,
Simonetti
D. A.
, and
Sant
G. N.
, “
Fly Ash–Ca(OH)2 Reactivity in Hypersaline NaCl and CaCl2 Brines
,”
ACS Sustainable Chemistry & Engineering
9
, no. 
25
(June
2021
):
8561
8571
, https://doi.org/10.1021/acssuschemeng.1c01884
28.
Chancey
R. T.
,
Stutzman
P.
,
Juenger
M. C. G.
, and
Fowler
D. W.
, “
Comprehensive Phase Characterization of Crystalline and Amorphous Phases of a Class F Fly Ash
,”
Cement and Concrete Research
40
, no. 
1
(January
2010
):
146
156
, https://doi.org/10.1016/j.cemconres.2009.08.029
29.
Durdziński
P. T.
,
Dunant
C. F.
,
Haha
M. B.
, and
Scrivener
K. L.
, “
A New Quantification Method Based on SEM-EDS to Assess Fly Ash Composition and Study the Reaction of Its Individual Components in Hydrating Cement Paste
,”
Cement and Concrete Research
73
(July
2015
):
111
122
, https://doi.org/10.1016/j.cemconres.2015.02.008
30.
Oey
T.
,
Timmons
J.
,
Stutzman
P.
,
Bullard
J. W.
,
Balonis
M.
,
Bauchy
M.
, and
Sant
G.
, “
An Improved Basis for Characterizing the Suitability of Fly Ash as a Cement Replacement Agent
,”
Journal of the American Ceramic Society
100
, no. 
10
(October
2017
):
4785
4800
, https://doi.org/10.1111/jace.14974
31.
Oey
T.
,
Kumar
A.
,
Falzone
G.
,
Huang
J.
,
Kennison
S.
,
Bauchy
M.
,
Neithalath
N.
,
Bullard
J. W.
, and
Sant
G.
, “
The Influence of Water Activity on the Hydration Rate of Tricalcium Silicate
,”
Journal of the American Ceramic Society
99
, no. 
7
(July
2016
):
2481
2492
, https://doi.org/10.1111/jace.14181
32.
Lothenbach
B.
,
Durdziński
P. T.
, and
de Weerdt
K.
, “
Thermogravimetric Analysis
,” in
A Practical Guide to Microstructural Analysis of Cementitious Materials
, ed.
Scrivener
K.
,
Snellings
R.
, and
Lothenbach
B.
(
Boca Raton, FL
:
CRC Press
,
2016
),
117
212
.
33.
Shi
Z.
,
Geiker
M. R.
,
Lothenbach
B.
,
De Weerdt
K.
,
Garzón
S. F.
,
Enemark-Rasmussen
K.
, and
Skibsted
J.
, “
Friedel’s Salt Profiles from Thermogravimetric Analysis and Thermodynamic Modelling of Portland Cement-Based Mortars Exposed to Sodium Chloride Solution
,”
Cement and Concrete Composites
78
(April
2017
):
73
83
, https://doi.org/10.1016/j.cemconcomp.2017.01.002
34.
Doebelin
N.
and
Kleeberg
R.
, “
Profex: A Graphical User Interface for the Rietveld Refinement Program BGMN
,”
Journal of Applied Crystallography
48
, pt. 5 (October
2015
):
1573
1580
, https://doi.org/10.1107/S1600576715014685
35.
Rietveld
H. M.
, “
A Profile Refinement Method for Nuclear and Magnetic Structures
,”
Journal of Applied Crystallography
2
, pt. 2 (June
1969
):
65
71
, https://doi.org/10.1107/S0021889869006558
36.
Bergmann
J.
,
Friedel
P.
, and
Kleeberg
R.
, “
BGMN – A New Fundamental Parameters Based Rietveld Program for Laboratory X-ray Sources, Its Use in Quantitative Analysis and Structure Investigations
,”
Commission of Powder Diffraction, International Union of Crystallography (IUCr)
20
(
1998
):
5
8
.
37.
Li
G.
,
Le Bescop
P.
, and
Moranville-Regourd
M.
, “
Synthesis of the U Phase (4CaO·0.9Al2O3·1.1SO3·0.5Na2O·16H2O)
,”
Cement and Concrete Research
27
, no. 
1
(January
1997
):
7
13
, https://doi.org/10.1016/S0008-8846(96)00194-9
38.
Kulik
D. A.
,
Wagner
T.
,
Smytrieva
S. V.
,
Kosakowski
G.
,
Hingerl
F. F.
,
Chudnenko
K. V.
,
, and
Berner
U. R.
, “
GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes
,”
Computational Geosciences
17
, no. 
1
(February
2013
):
1
24
, https://doi.org/10.1007/s10596-012-9310-6
39.
Wagner
T.
,
Kulik
D. A.
,
Hingerl
F. F.
, and
Dmytrieva
S. V.
, “
GEM-Selektor Geochemical Modeling Package: TSolMod Library and Data Interface for Multicomponent Phase Models
,”
The Canadian Mineralogist
50
, no. 
5
(
2012
):
1173
1195
, https://doi.org/10.3749/canmin.50.5.1173
40.
Lothenbach
B.
,
Matschei
T.
,
Möschner
G.
, and
Glasser
F. P.
, “
Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement
,”
Cement and Concrete Research
38
, no. 
1
(January
2008
):
1
18
, https://doi.org/10.1016/j.cemconres.2007.08.017
41.
Lothenbach
B.
,
Kulik
D. A.
,
Matschei
T.
,
Balonis
M.
,
Baquerizo
L.
,
Dilnesa
B.
,
Miron
G. D.
, and
Myers
R. J.
, “
Cemdata18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials
,”
Cement and Concrete Research
115
(January
2019
):
472
506
, https://doi.org/10.1016/j.cemconres.2018.04.018
42.
Thoenen
T.
,
Hummel
W.
,
Berner
U.
, and
Curti
E.
,
The PSI/Nagra Chemical Thermodynamic Database 12/07
(
Villigen, Switzerland
:
Paul Scherrer Institut
,
2014
).
43.
Johnson
J. W.
,
Oelkers
E. H.
, and
Helgeson
H. C.
, “
SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 Bar and 0 to 1000°C
,”
Computers & Geosciences
18
, no. 
7
(August
1992
):
899
947
, https://doi.org/10.1016/0098-3004(92)90029-Q
44.
Hummel
W.
,
Berner
U.
,
Curti
E.
,
Pearson
F. J.
, and
Thoenen
T.
, “
Nagra/PSI Chemical Thermodynamic Data Base 01/01
,”
Radiochimica Acta
90
, nos. 
9–11
(
2002
):
805
813
, https://doi.org/10.1524/ract.2002.90.9-11_2002.805
45.
Helgeson
H. C.
,
Kirkham
D. H.
, and
Flowers
G. C.
, “
Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes by High Pressures and Temperatures; IV, Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600 Degrees C and 5kb
,”
American Journal of Science
281
, no. 
10
(
1981
):
1249
1516
, https://doi.org/10.2475/ajs.281.10.1249
46.
Vollpracht
A.
,
Lothenbach
B.
,
Snellings
R.
, and
Haufe
J.
, “
The Pore Solution of Blended Cements: A Review
,”
Materials and Structures
49
, no. 
8
(August
2016
):
3341
3367
, https://doi.org/10.1617/s11527-015-0724-1
47.
Pitzer
K. S.
, “
Ion Interaction Approach: Theory and Data Correlation
,” in
Activity Coefficients in Electrolyte Solutions
, ed.
Pitzer
K. S.
(
Boca Raton, FL
:
CRC Press
,
1991
),
75
153
.
48.
Langmuir
D.
,
Aqueous Environmental Geochemistry
(
Upper Saddle River, NJ
:
Prentice Hall
,
1997
).
49.
Elakneswaran
Y.
,
Owaki
E.
, and
Nawa
T.
, “
Modelling Long-Term Durability Performance of Cementitious Materials under Sodium Sulphate Interaction
,”
Applied Sciences
8
, no. 
12
(
2018
): 2597, https://doi.org/10.3390/app8122597
50.
Lothenbach
B.
and
Gruskovnjak
A.
, “
Hydration of Alkali-Activated Slag: Thermodynamic Modelling
,”
Advances in Cement Research
19
, no. 
2
(April
2007
):
81
92
, https://doi.org/10.1680/adcr.2007.19.2.81
51.
Blanc
P.
,
Lach
A.
,
Lassin
A.
,
Falah
M.
,
Obenaus-Emler
R.
, and
Guignot
S.
, “
Modeling Hydration of Mine Tailings: Production of Hydraulic Binders from Alkali-Activated Materials
,”
Cement and Concrete Research
137
(November
2020
): 106216, https://doi.org/10.1016/j.cemconres.2020.106216
52.
Hazen
R. M.
, “
A Useful Fiction: Polyhedral Modeling of Mineral Properties
,”
American Journal of Science
288-A
(
1988
):
242
269
.
53.
Chermak
J. A.
and
Rimstidt
J. D.
, “
Estimating the Free Energy of Formation of Silicate Minerals at High Temperatures from the Sum of Polyhedral Contributions
,”
American Mineralogist
75
, nos. 
11–12
(
1990
):
1376
1380
.
54.
Zhen-Wu
B. Y.
,
Prentice
D. P.
,
Ryan
J. V.
,
Ellison
K.
,
Bauchy
M.
, and
Sant
G.
, “
zeo19: A Thermodynamic Database for Assessing Zeolite Stability during the Corrosion of Nuclear Waste Immobilization Glasses
,”
npj Materials Degradation
4
, no. 
1
(
2020
): 2, https://doi.org/10.1038/s41529-019-0106-1
55.
Dosch
W.
and
zur Strassen
H.
, “
Ein alkalihaltiges Calciumaluminatsulfathydrat (Natrium-Monosulfat) [An Alkali-Containing Calcium Aluminate Sulphate Hydrate]
,”
Zement-Kalk-Gips
20
, no. 
9
(
1967
): 11.
56.
Li
G.
,
Le Bescop
P.
and
Moranville
M.
, “
Expansion Mechanism Associated with the Secondary Formation of the U Phase in Cement-Based Systems Containing High Amounts of Na2SO4
,”
Cement and Concrete Research
26
, no. 
2
(February
1996
):
195
201
, https://doi.org/10.1016/0008-8846(95)00199-9
57.
Li
G.
,
Le Bescop
P.
, and
Moranville
M.
, “
The U Phase Formation in Cement-Based Systems Containing High Amounts of Na2SO4
,”
Cement and Concrete Research
26
, no. 
1
(January
1996
):
27
33
, https://doi.org/10.1016/0008-8846(95)00189-1
58.
Song
Y.
,
Yang
K.
,
Chen
J.
,
Wang
K.
,
Sant
G.
, and
Bauchy
M.
, “
Machine Learning Enables Rapid Screening of Reactive Fly Ashes Based on Their Network Topology
,”
ACS Sustainable Chemistry & Engineering
9
, no. 
7
(
2021
):
2639
2650
, https://doi.org/10.1021/acssuschemeng.0c06978
59.
Bauchy
M.
, “
Topological Constraint Theory and Rigidity of Glasses
,” in
21st Century Nanoscience – A Handbook
, ed.
Sattler
K. D.
(
Boca Raton, FL
:
CRC Press
,
2019
).
60.
Kapeluszna
E.
,
Kotwica
Ł.
,
Różycka
A.
, and
Gołek
Ł.
, “
Incorporation of Al in C-A-S-H Gels with Various Ca/Si and Al/Si Ratio: Microstructural and Structural Characteristics with DTA/TG, XRD, FTIR and TEM Analysis
,”
Construction and Building Materials
155
(November
2017
):
643
653
, https://doi.org/10.1016/j.conbuildmat.2017.08.091
61.
Bernard
E.
,
Lothenbach
B.
,
Le Goff
F.
,
Pochard
I.
, and
Dauzères
A.
, “
Effect of Magnesium on Calcium Silicate Hydrate (C-S-H)
,”
Cement and Concrete Research
97
(July
2017
):
61
72
, https://doi.org/10.1016/j.cemconres.2017.03.012
62.
Matschei
T.
,
Lothenbach
B.
, and
Glasser
F. P.
, “
The AFm Phase in Portland Cement
,”
Cement and Concrete Research
37
, no. 
2
(February
2007
):
118
130
, https://doi.org/10.1016/j.cemconres.2006.10.010
63.
Matschei
T.
,
Lothenbach
B.
, and
Glasser
F. P.
, “
Thermodynamic Properties of Portland Cement Hydrates in the System CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O
,”
Cement and Concrete Research
37
, no. 
10
(October
2007
):
1379
1410
, https://doi.org/10.1016/j.cemconres.2007.06.002
64.
Warren
C. J.
and
Reardon
E. J.
, “
The Solubility of Ettringite at 25°C
,”
Cement and Concrete Research
24
, no. 
8
(
1994
):
1515
1524
, https://doi.org/10.1016/0008-8846(94)90166-X
65.
Bothe
J. V.
 Jr.
and
Brown
P. W.
, “
PhreeqC Modeling of Friedel’s Salt Equilibria at 23±1 °C
,”
Cement and Concrete Research
34
, no. 
6
(June
2004
):
1057
1063
, https://doi.org/10.1016/j.cemconres.2003.11.016
66.
Allada
R. K.
,
Pless
J. D.
,
Nenoff
T. M.
, and
Navrotsky
A.
, “
Thermochemistry of Hydrotalcite-Like Phases Intercalated with CO32-, NO3-, Cl-, I-, and ReO4-
,”
Chemistry of Materials
17
, no. 
9
(
2005
):
2455
2459
, https://doi.org/10.1021/cm047813x
67.
Bontchev
R. P.
,
Liu
S.
,
Krumhansl
J. L.
,
Voigt
J.
, and
Nenoff
T. M.
, “
Synthesis, Characterization, and Ion Exchange Properties of Hydrotalcite Mg6Al2(OH)16(A)x(A′)2-x·4H2O (A, A′ = Cl-, Br-, I-, and NO3-, 2 ≥ x ≥ 0) Derivatives
,”
Chemistry of Materials
15
, no. 
19
(September
2003
):
3669
3675
, https://doi.org/10.1021/cm034231r
68.
Ke
X.
,
Bernal
S. A.
, and
Provis
J. L.
, “
Uptake of Chloride and Carbonate by Mg-Al and Ca-Al Layered Double Hydroxides in Simulated Pore Solutions of Alkali-Activated Slag Cement
,”
Cement and Concrete Research
100
(October
2017
):
1
13
, https://doi.org/10.1016/j.cemconres.2017.05.015
69.
Cavani
F.
,
Trifirò
F.
, and
Vaccari
A.
, “
Hydrotalcite-Type Anionic Clays: Preparation, Properties and Applications
,”
Catalysis Today
11
, no. 
2
(December
1991
):
173
301
, https://doi.org/10.1016/0920-5861(91)80068-K
70.
Balonis
M.
, “
The Influence of Inorganic Chemical Accelerators and Corrosion Inhibitors on the Mineralogy of Hydrated Portland Cement Systems
” (PhD diss.,
University of Aberdeen
,
2010
).
71.
La Plante
E. C.
,
Oey
T.
,
Hsiao
Y.-H.
,
Perry
L.
,
Bullard
J. W.
, and
Sant
G.
, “
Enhancing Silicate Dissolution Kinetics in Hyperalkaline Environments
,”
The Journal of Physical Chemistry C
123
, no. 
6
(
2019
):
3687
3695
, https://doi.org/10.1021/acs.jpcc.8b12076
72.
Brady
P. V.
and
Walther
J. V.
, “
Controls on Silicate Dissolution Rates in Neutral and Basic pH Solutions at 25°C
,”
Geochimica et Cosmochimica Acta
53
, no. 
11
(
1989
):
2823
2830
, https://doi.org/10.1016/0016-7037(89)90160-9
73.
Oelkers
E. H.
,
Schott
J.
, and
Devidal
J.-L.
, “
The Effect of Aluminum, pH, and Chemical Affinity on the Rates of Aluminosilicate Dissolution Reactions
,”
Geochimica et Cosmochimica Acta
58
, no. 
9
(
1994
):
2011
2024
, https://doi.org/10.1016/0016-7037(94)90281-X
74.
Fournier
M.
,
Frugier
P.
, and
Gin
S.
, “
Resumption of Alteration at High Temperature and pH: Rates Measurements and Comparison with Initial Rates
,”
Procedia Materials Science
7
(
2014
):
202
208
, https://doi.org/10.1016/j.mspro.2014.10.026
This content is only available via PDF.
You do not currently have access to this content.