Abstract

Time-series surface resistivity (SR) measurements with up to 56 days of hydration on concretes containing potential supplementary cementitious materials (SCMs) cured at an ambient temperature of 23°C and an elevated temperature of 38°C have the potential to indirectly determine the reactivity of many of these SCMs more accurately than conventional indirect testing metrics, such as the strength activity index in ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. SR time-series measurements can distinguish between microstructural densification caused by inert materials and densification caused by pozzolanic materials. However, it may be possible to assess pozzolanicity earlier in the test series, particularly when additional physical and chemical data regarding the material are known. The aim of this paper is to develop predictive models using machine learning on a broad range of both ASTM C618 conforming and nonconforming materials’ time-series SR curves based on the materials’ physical and chemical characteristics and early SR measurement data. Gaussian process regression models were used to predict the SR values of concretes cured at two different temperatures. These models can rapidly screen materials based solely on their chemical and physical characteristics to predict SR curves, which can then be used to determine a material’s suitability for beneficial use in concrete. Models using early age SR measurements were produced to predict the 56-day SR value for concretes cured at both elevated and nonelevated temperatures. This data-driven approach allows for the design of novel reactive materials, the inclusion of existing reactive materials in construction, and a reduction in testing durations.

References

1.
Snellings
R.
, “
Assessing, Understanding and Unlocking Supplementary Cementitious Materials
,”
RILEM Technical Letters
1
(August
2016
):
50
55
, https://doi.org/10.21809/rilemtechlett.2016.12
2.
Annual Energy Outlook 2021
,” U.S. Energy Information Administration (EIA), 2021, https://web.archive.org/web/20220105161217/https://www.eia.gov/outlooks/aeo/
3.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
, ASTM C618-19 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2019
), https://doi.org/10.1520/C0618-19
4.
Kalina
R. D.
,
Al-Shmaisani
S.
,
Ferron
R. D.
, and
Juenger
M. C. G.
, “
False Positives in ASTM C618 Specifications for Natural Pozzolans
,”
ACI Materials Journal
116
, no. 
1
(January
2019
):
165
172
, https://doi.org/10.14359/51712243
5.
Berodier
E.
and
Scrivener
K.
, “
Understanding the Filler Effect on the Nucleation and Growth of C‐S‐H
,”
Journal of the American Ceramic Society
97
, no. 
12
(December
2014
):
3764
3773
.
6.
Juenger
M. C. G.
and
Siddique
R.
, “
Recent Advances in Understanding the Role of Supplementary Cementitious Materials in Concrete
,”
Cement and Concrete Research
78
, Part A (December
2015
):
71
80
, https://doi.org/10.1016/j.cemconres.2015.03.018
7.
Diaz-Loya
I.
,
Juenger
M.
,
Seraj
S.
, and
Minkara
R.
, “
Extending Supplementary Cementitious Material Resources: Reclaimed and Remediated Fly Ash and Natural Pozzolans
,”
Cement and Concrete Composites
101
(August
2019
):
44
51
, https://doi.org/10.1016/j.cemconcomp.2017.06.011
8.
Rios
R. T.
,
Lolli
F.
,
Xie
L.
,
Xie
Y.
, and
Kurtis
K. E.
, “
Screening Candidate Supplementary Cementitious Materials under Standard and Accelerated Curing through Time-Series Surface Resistivity Measurements and Change-Point Detection
,”
Cement and Concrete Research
148
(October
2021
): 106538, https://doi.org/10.1016/j.cemconres.2021.106538
9.
Nadelman
E. I.
and
Kurtis
K. E.
, “
A Resistivity-Based Approach to Optimizing Concrete Performance
,”
Concrete International
36
, no. 
5
(May
2014
):
50
54
.
10.
Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration
, AASHTO T358 (Washington, DC:
American Association of State Highway and Transportation Officials
,
2021
).
11.
Wang
Y.
,
Burris
L.
,
Shearer
C. R.
,
Hooton
D.
, and
Suraneni
P.
, “
Strength Activity Index and Bulk Resistivity Index Modifications That Differentiate Inert and Reactive Materials
,”
Cement and Concrete Composites
124
(November
2021
): 104240, https://doi.org/10.1016/j.cemconcomp.2021.104240
12.
Beushausen
H.
and
Luco
L. F.
,
Performance-Based Specifications and Control of Concrete Durability
(
Berlin, Germany:
Springer Nature
,
2016
),
66
72
, https://doi.org/10.1007/978-94-017-7309-6
13.
Asteris
P. G.
,
Skentou
A. D.
,
Bardhan
A.
,
Samui
P.
, and
Pilakoutas
K.
, “
Predicting Concrete Compressive Strength Using Hybrid Ensembling of Surrogate Machine Learning Models
,”
Cement and Concrete Research
145
(July
2021
): 106449, https://doi.org/10.1016/j.cemconres.2021.106449
14.
Dao
D. V.
,
Adeli
H.
,
Ly
H.-B.
,
Le
L. M.
,
Le
V. M.
,
Le
T.-T.
, and
Pham
B. T.
, “
A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation
,”
Sustainability
12
, no. 
3
(January
2020
): 830, https://doi.org/10.3390/su12030830
15.
Hoang
N.-D.
,
Pham
A.-D.
,
Nguyen
Q.-L.
, and
Pham
Q.-N.
, “
Estimating Compressive Strength of High Performance Concrete with Gaussian Process Regression Model
,”
Advances in Civil Engineering
2016
(October
2016
): 2861380, https://doi.org/10.1155/2016/2861380
16.
Zhang
Y.
and
Xu
X.
, “
Predicting Multiple Properties of Pervious Concrete through the Gaussian Process Regression
,”
Advances in Civil Engineering Materials
10
, no. 
1
(February
2021
):
56
73
, https://doi.org/10.1520/ACEM20200134
17.
Kang
S.
,
Ley
M. T.
,
Lloyd
Z.
, and
Kim
T.
, “
Using the Particle Model to Predict Electrical Resistivity Performance of Fly Ash in Concrete
,”
Construction and Building Materials
261
(November
2020
): 119975, https://doi.org/10.1016/j.conbuildmat.2020.119975
18.
Kim
T.
,
Ley
M. T.
,
Kang
S.
,
Davis
J. M.
,
Kim
S.
, and
Amrollahi
P.
, “
Using Particle Composition of Fly Ash to Predict Concrete Strength and Electrical Resistivity
,”
Cement and Concrete Composites
107
(March
2020
): 103493, https://doi.org/10.1016/j.cemconcomp.2019.103493
19.
Helsel
M. A.
,
Ferraris
C. F.
, and
Bentz
D. P.
, “
Comparative Study of Methods to Measure the Density of Cementitious Powders
,”
Journal of Testing And Evaluation
44
, no. 
6
(November
2016
):
2147
2154
, https://doi.org/10.1520/JTE20150148
20.
Scrivener
K.
,
Snellings
R.
, and
Lothenbach
B.
, eds.,
A Practical Guide to Microstructural Analysis of Cementitious Materials
, 1st ed. (
Boca Raton, FL
:
CRC Press
,
2018
).
21.
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
, ASTM C192/C192M-19 (
West Conshohocken, PA
:
ASTM International
, approved December 1,
2019
), https://doi.org/10.1520/C0192_C0192M-19
22.
James
G.
,
Witten
D.
,
Hastie
T.
, and
Tibshirani
R.
,
An Introduction to Statistical Learning
, 1st ed. (
New York
:
Springer
,
2013
), https://doi.org/10.1007/978-1-4614-7138-7
23.
Aughenbaugh
K. L.
,
Stutzman
P.
, and
Juenger
M. C.
, “
Identifying Glass Compositions in Fly Ash
,”
Frontiers in Materials
3
(January
2016
):
1
10
, https://doi.org/10.3389/fmats.2016.00001
24.
Durdziński
P. T.
,
Snellings
R.
,
Dunant
C. F.
,
Haha
M. B.
, and
Scrivener
K. L.
, “
Fly Ash as an Assemblage of Model Ca–Mg–Na-Aluminosilicate Glasses
,”
Cement and Concrete Research
78
, Part B (December
2015
):
263
272
, https://doi.org/10.1016/j.cemconres.2015.08.005
25.
Glosser
D.
,
Choudhary
A.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Investigation of Reactivity of Fly Ash and Its Effect on Mixture Properties
,”
ACI Materials Journal
116
, no. 
4
(July
2019
):
193
200
.
26.
Williams
R. P.
and
Van Riessen
A.
, “
Determination of the Reactive Component of Fly Ashes for Geopolymer Production Using XRF and XRD
,”
Fuel
89
, no. 
12
(December
2010
):
3683
3692
, https://doi.org/10.1016/j.fuel.2010.07.031
27.
Glosser
D.
,
Suraneni
P.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Using Glass Content to Determine the Reactivity of Fly Ash for Thermodynamic Calculations
,”
Cement and Concrete Composites
115
(January
2021
): 103849, https://doi.org/10.1016/j.cemconcomp.2020.103849
28.
Chancey
R. T.
,
Stutzman
P.
,
Juenger
M. C. G.
, and
Fowler
D. W.
, “
Comprehensive Phase Characterization of Crystalline and Amorphous Phases of a Class F Fly Ash
,”
Cement and Concrete Research
40
, no. 
1
(January
2010
):
146
156
, https://doi.org/10.1016/j.cemconres.2009.08.029
29.
Ghiasvand
E.
,
Ramezanianpour
A. A.
, and
Ramezanianpour
A. M.
, “
Influence of Grinding Method and Particle Size Distribution on the Properties of Portland-Limestone Cements
,”
Materials and Structures
48
, no. 
5
(May
2015
):
1273
1283
, https://doi.org/10.1617/s11527-013-0232-0
30.
Ingram
K. D.
and
Daugherty
K. E.
, “
A Review of Limestone Additions to Portland Cement and Concrete
,”
Cement and Concrete Composites
13
, no. 
3
(
1991
):
165
170
, https://doi.org/10.1016/0958-9465(91)90016-B
31.
Jones
M. R.
,
Zheng
L.
, and
Newlands
M. D.
, “
Comparison of Particle Packing Models for Proportioning Concrete Constitutents for Minimum Voids Ratio
,”
Materials and Structures
35
, no. 
5
(January
2002
):
301
309
, https://doi.org/10.1007/BF02482136
32.
Tangpagasit
J.
,
Cheerarot
R.
,
Jaturapitakkul
C.
, and
Kiattikomol
K.
, “
Packing Effect and Pozzolanic Reaction of Fly Ash in Mortar
,”
Cement and Concrete Research
35
, no. 
6
(June
2005
):
1145
1151
, https://doi.org/10.1016/j.cemconres.2004.09.030
33.
DeRousseau
M. A.
,
Laftchiev
E.
,
Kasprzyk
J. R.
,
Rajagopalan
B.
, and
Srubar
W. V.
 III
, “
A Comparison of Machine Learning Methods for Predicting the Compressive Strength of Field-Placed Concrete
,”
Construction and Building Materials
228
(December
2019
): 116661, https://doi.org/10.1016/j.conbuildmat.2019.08.042
34.
Oey
T.
,
Jones
S.
,
Bullard
J. W.
, and
Sant
G.
, “
Machine Learning Can Predict Setting Behavior and Strength Evolution of Hydrating Cement Systems
,”
Journal of the American Ceramic Society
103
, no. 
1
(January
2020
):
480
490
, https://doi.org/10.1111/jace.16706
35.
Cai
R.
,
Han
T.
,
Liao
W.
,
Huang
J.
,
Li
D.
,
Kumar
A.
, and
Ma
H.
, “
Prediction of Surface Chloride Concentration of Marine Concrete Using Ensemble Machine Learning
,”
Cement and Concrete Research
136
(October
2020
): 106164, https://doi.org/10.1016/j.cemconres.2020.106164
36.
Rasmussen
C.
and
Williams
C.
,
Gaussian Processes for Machine Learning
(
Cambridge, MA
:
MIT Press
,
2006
).
38.
Vert
J.-P.
,
Tsuda
K.
, and
Schölkopf
B.
, “
A Primer on Kernel Methods
,” in
Kernel Methods in Computational Biology
(
Cambridge, MA
:
MIT Press
,
2004
),
35
70
.
39.
Neal
R. M.
,
Bayesian Learning for Neural Networks
(
Berlin, Germany
:
Springer Science & Business Media
,
2012
).
40.
Freedman
D.
and
Diaconis
P.
, “
On the Histogram as a Density Estimator: L2 Theory
,”
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete
57
(December
1981
):
453
476
, https://doi.org/10.1007/BF01025868
41.
Price
W. H.
, “
Factors Influencing Concrete Strength
,”
ACI Journal Proceedings
47
, no. 
2
(February
1951
):
417
432
.
42.
Lothenbach
B.
,
Winnefeld
F.
,
Alder
C.
,
Wieland
E.
, and
Lunk
P.
, “
Effect of Temperature on the Pore Solution, Microstructure and Hydration Products of Portland Cement Pastes
,”
Cement and Concrete Research
37
, no. 
4
(April
2007
):
483
491
, https://doi.org/10.1016/j.cemconres.2006.11.016
43.
Escalante-Garc´ıá
J. I.
and
Sharp
J. H.
, “
Effect of Temperature on the Hydration of the Main Clinker Phases in Portland Cements: Part II, Blended Cements
,”
Cement and Concrete Research
28
, no. 
9
(September
1998
):
1259
1274
, https://doi.org/10.1016/S0008-8846(98)00107-0
44.
Escalante-Garcia
J.
and
Sharp
J.
, “
Effect of Temperature on the Hydration of the Main Clinker Phases in Portland Cements: Part I, Neat Cements
,”
Cement and Concrete Research
28
, no. 
9
(September
1998
):
1245
1257
, https://doi.org/10.1016/S0008-8846(98)00115-X
45.
Maltais
Y.
and
Marchand
J.
, “
Influence of Curing Temperature on Cement Hydration and Mechanical Strength Development of Fly Ash Mortars
,”
Cement and Concrete Research
27
, no. 
7
(July
1997
):
1009
1020
, https://doi.org/10.1016/S0008-8846(97)00098-7
46.
Hanehara
S.
,
Tomosawa
F.
,
Kobayakawa
M.
, and
Hwang
K.
, “
Effects of Water/Powder Ratio, Mixing Ratio of Fly Ash, and Curing Temperature on Pozzolanic Reaction of Fly Ash in Cement Paste
,”
Cement and Concrete Research
31
, no. 
1
(January
2001
):
31
39
, https://doi.org/10.1016/S0008-8846(00)00441-5
47.
Noushini
A.
and
Castel
A.
, “
The Effect of Heat-Curing on Transport Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete
,”
Construction and Building Materials
112
(June
2016
):
464
477
, https://doi.org/10.1016/j.conbuildmat.2016.02.210
48.
Al-Shmaisani
S.
,
Kalina
R. D.
,
Ferron
R. D.
, and
Juenger
M. C. G.
, “
Critical Assessment of Rapid Methods to Qualify Supplementary Cementitious Materials for Use in Concrete
,”
Cement and Concrete Research
153
(March
2022
): 106709, https://doi.org/10.1016/j.cemconres.2021.106709
49.
Hosseinzadeh
N.
, “
Synergistic Effects of Air Content and Supplementary Cementitious Materials in Reducing Damage in Concrete Exposed to High Concentrations of Deicing Salt and Various Temperature Conditions
” (PhD diss.,
University of Miami
,
2021
).
50.
Kasaniya
M.
,
Thomas
M. D. A.
, and
Moffatt
E. G.
, “
Pozzolanic Reactivity of Natural Pozzolans, Ground Glasses and Coal Bottom Ashes and Implication of Their Incorporation on the Chloride Permeability of Concrete
,”
Cement and Concrete Research
139
(January
2021
): 106259, https://doi.org/10.1016/j.cemconres.2020.106259
51.
Suraneni
P.
,
Azad
V. J.
,
Isgor
O. B.
, and
Weiss
J.
, “
Role of Supplementary Cementitious Material Type in the Mitigation of Calcium Oxychloride Formation in Cementitious Pastes
,”
Journal of Materials in Civil Engineering
30
, no. 
10
(October
2018
): 04018248, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002425
52.
Chopperla
K. S. T.
,
Drimalas
T.
,
Beyene
M.
,
Tanesi
J.
,
Folliard
K.
,
Ardani
A.
, and
Ideker
J. H.
, “
Combining Reliable Performance Testing and Binder Properties to Determine Preventive Measures for Alkali-Silica Reaction
,”
Cement and Concrete Research
151
(January
2022
): 106641, https://doi.org/10.1016/j.cemconres.2021.106641
53.
Chopperla
K. S. T.
and
Ideker
J. H.
, “
Using Electrical Resistivity to Determine the Efficiency of Supplementary Cementitious Materials to Prevent Alkali-Silica Reaction in Concrete
,”
Cement and Concrete Composites
125
(January
2022
): 104282, https://doi.org/10.1016/j.cemconcomp.2021.104282
This content is only available via PDF.
You do not currently have access to this content.