Abstract

The use of silica fume in high-strength and ultra-high performance concretes has been studied from many perspectives including optimum replacement rate, implications on late-age strengths, and rheological properties. However, the effects of silica fume purity (e.g., silicon dioxide [SiO2] content) are not nearly as well documented, especially when shorter duration curing regimes at higher temperatures are utilized. In this paper, four silica fumes with varying SiO2 contents were used to quantify the effects of SiO2 purity in silica fume on the behavior of ultra-high performance concrete. Several variables were evaluated to determine if changes in SiO2 content significantly influenced properties of interest. Overall, silica fume purity had the most impact on thermal set time, maximum temperature generated during hydration, and compressive strength. Thermal set time values differed by over 7 h, and maximum temperatures differed by 7°C. After one day of room-temperature curing, compressive strength varied by 50 MPa, and elastic modulus varied by 14 GPa. When specimens were cured at elevated temperatures for short durations of time (e.g., one to six days), fc values ranged from 35 to 47 MPa.

References

1.
ACI Committee 239
Ultra-High-Performance Concrete: An Emerging Technology Report, ACI PRC-239-18
(
Farmington Hills, MI
:
American Concrete Institute
,
2018
).
2.
Graybeal
B. A.
,
Material Property Characterization of Ultra-High Performance Concrete, FHWA-HRT-06-103
(
McLean, VA
:
Federal Highway Administration
,
2006
).
3.
Thornhill
T. F.
and
Reinhart
W. D.
,
Ballistic Penetration Test Results for Ductal and Ultra-High Performance Concrete Samples, SAND2010-2222
(
Livermore, CA
:
Sandia National Laboratories
,
2010
).
4.
Cargile
J. D.
,
O’Neil
E. F.
, and
Neeley
B. D.
, “
Very-High-Strength Concretes for Use in Blast and Penetration Resistant Structures
,”
AMPTIAC Quarterly
6
, no. 
4
(
2002
):
61
66
.
5.
Brown
J. L.
,
Howard
I. L.
, and
Barnes
A. T.
, “
Response of Concrete Elements Subjected to Impact by Fragments with Varying Aspect Ratios
,”
Journal of Materials in Civil Engineering
33
, no. 
4
(April
2021
): 04021031, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003649
6.
Weldon
B. D.
,
Jáuregui
D. V.
,
Newtson
C. M.
,
Taylor
C. W.
,
Montoya
K. F.
,
Allena
S.
,
Muro
J.
,
Talahat
M.
,
Lyell
E.
, and
Visage
E. T.
,
Feasibility Analysis of Ultra High Performance Concrete for Prestressed Bridge Applications – Phase II, NM09MSC-01
(
Albuquerque, NM
:
New Mexico Department of Transportation
,
2012
).
7.
Wipf
T.
,
Sritharan
S.
,
Abu-Hawash
A.
,
Phares
B.
, and
Bierwagen
D.
,
Iowa’s Ultra-High Performance Implementation, Iowa Department of Transportation Research News
(
Ames, IA
:
Iowa DOT
,
2011
).
8.
Voort
T. V.
,
Suleiman
M.
, and
Sritharan
S.
,
Design and Performance Verification of UHPC Piles for Deep Foundation, IHRB Project TR-558
(
Ames, IA
:
Iowa Department of Transportation
,
2008
).
9.
Graybeal
B.
,
Brühwiler
E.
,
Kim
B. S.
,
Toutlemonde
F.
,
Voo
Y. L.
, and
Zaghi
A.
, “
International Perspective on UHPC in Bridge Engineering
,”
Journal of Bridge Engineering
25
, no. 
11
(November
2020
): 04020094, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001630
10.
Zaghi
A. E.
,
Wille
K.
,
Zmetra
K.
,
McMullen
K.
,
Krusewski
D.
, and
Hain
A.
,
Repair of Steel Beam/Girder Ends with Ultra High-Strength Concrete – Phase II, CT-2295-1-17-2
(
Newington, CT
:
Connecticut Department of Transportation
,
2016
).
11.
Farzad
M.
,
Shafieifar
M.
, and
Azizinamini
A.
, “
Retrofitting of Bridge Columns Using UHPC
,”
Journal of Bridge Engineering
24
, no. 
12
(December
2019
): 04019121, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001497
12.
Kim
Y. J.
,
Development of Cost-Effective Ultra-High Performance Concrete (UHPC) for Colorado’s Sustainable Infrastructure, CDOT-2018-15
(
Denver, CO
:
Colorado Department of Transportation - Research
,
2018
).
13.
Ahlborn
T. M.
,
Peuse
E. J.
, and
Misson
D. L.
,
Ultra-High-Performance-Concrete for Michigan Bridges Material Performance – Phase I, Research Report RC-1525
(
Lansing, MI
:
Michigan Department of Transportation
,
2008
).
14.
Standard Specification for Silica Fume Used in Cementitious Mixtures
, ASTM C1240-20 (
West Conshohocken, PA
:
ASTM International
, approved January 15,
2020
), https://doi.org/10.1520/C1240-20
15.
Siddique
R.
and
Chahal
N.
, “
Use of Silicon and Ferrosilicon Industry By-Products (Silica Fume) in Cement Paste and Mortar
,”
Resources, Conservation and Recycling
55
, no. 
8
(June
2011
):
739
744
, https://doi.org/10.1016/j.resconrec.2011.03.004
16.
Kim
Y. J.
and
Wang
J.
, “
Development of Ultra-High Performance Concrete with Various Silica Admixtures
,”
ACI Materials Journal
116
, no. 
2
(March
2019
):
33
44
, https://doi.org/10.14359/51714450
17.
Burroughs
J. F.
,
Rushing
T. S.
,
Scott
D. A.
, and
Williams
B. A.
, “
Analyzing Effects of Varied Silica Fume Sources within Baseline UHPC
,” in
First International Interactive Symposium on UHPC
(
Ames, IA
:
Iowa State University Digital Press
,
2016
), https://doi.org/10.21838/uhpc.2016.75
18.
Tai
Y.-S.
and
El-Tawil
S.
, “
Effect of Component Materials and Mixing Protocol on the Short-Term Performance of Generic Ultra-High-Performance Concrete
,”
Construction and Building Materials
238
(March
2020
): 117703, https://doi.org/10.1016/j.conbuildmat.2019.117703
19.
Staquet
S.
and
Espion
B.
, “
Influence of Cement and Silica Fume Type on Compressive Strength of Reactive Powder Concrete
” (paper presentation,
Sixth International Symposium on the Utilization of High Strength/High Performance Concrete
,
Leipzig, Germany
, June
2002
).
20.
Burroughs
J. F.
,
Weiss
C. A.
 Jr.
,
Shannon
J. D.
,
Haddock
J. E.
, and
Weiss
J.
. “
Modeling the Influence of Changes in Silica Fume on Concrete Performance
,”
Journal of Materials in Civil Engineering
33
, no. 
3
(March
2021
): 04020500, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003580
21.
Alsalman
A.
,
Dang
C. N.
, and
Hale
W. M.
, “
Development of Ultra-High Performance Concrete with Locally Available Materials
,”
Construction and Building Materials
133
(February
2017
):
135
145
, https://doi.org/10.1016/j.conbuildmat.2016.12.040
22.
Amin
M.
,
Zeyad
A. M.
,
Teyah
B. A.
, and
Agwa
I. S.
, “
Effect of Ferrosilicon and Silica Fume on Mechanical, Durability, and Microstructure Characteristics of Ultra High-Performance Concrete
,”
Construction and Building Materials
320
(February
2022
): 126233, https://doi.org/10.1016/j.conbuildmat.2021.126233
23.
Ibrahim
M. A.
,
Farhat
M.
,
Issa
M. A.
, and
Hasse
J. A.
, “
Effect of Material Constituents on Mechanical and Fracture Mechanics Properties of Ultra-High-Performance Concrete
,”
ACI Materials Journal
114
, no. 
3
(May
2017
):
453
465
, https://doi.org/10.14359/51689717
24.
Kadri
E.-H.
,
Duval
R.
,
Aggoun
S.
, and
Kenai
S.
, “
Silica Fume Effect on Hydration Heat and Compressive Strength of High-Performance Concrete
,”
ACI Materials Journal
106
, no. 
2
(March
2009
):
107
113
, https://doi.org/10.14359/56454
25.
Park
J. J.
,
Kang
S.-T.
,
Koh
K. T.
, and
Kim
S.-W.
, “
Influence of the Ingredients on the Compressive Strength of UHPC as a Fundamental Study on Optimize the Mixing Proportion
,” in
Ultra High Performance Concrete (UHPC)
(
Kassel, Germany
:
Kassel University Press
,
2008
),
105
113
.
26.
Sabet
F. A.
,
Libre
N. A.
, and
Shekarchi
M.
, “
Mechanical and Durability Properties of Self Consolidating High Performance Concrete Incorporating Natural Zeolite, Silica Fume, and Fly Ash
,”
Construction and Building Materials
44
(July
2013
):
175
184
, https://doi.org/10.1016/j.conbuildmat.2013.02.069
27.
Sadrmomtazi
A.
,
Tajasosi
S.
, and
Tahmouresi
B.
, “
Effect of Materials Proportion on Rheology and Mechanical Strength and Microstructure of Ultra-High Performance Concrete (UHPC)
,”
Construction and Building Materials
187
(October
2018
):
1103
1112
, https://doi.org/10.1016/j.conbuildmat.2018.08.070
28.
Talebinejad
I.
,
Bassam
S. A.
,
Iranmanesh
A.
, and
Shekarchizadeh
M.
, “
Optimizing Mix Proportions of Normal Weight Reactive Powder Concrete with Strengths of 200–350 MPa
,” in
Ultra High Performance Concrete (UHPC)
(
Kassel, Germany
:
Kassel University Press
,
2004
),
133
141
.
29.
Wu
Z.
,
Khayat
K. H.
, and
Shi
C.
, “
Changes in Rheology and Mechanical Properties of Ultra-High Performance Concrete with Silica Fume Content
,”
Cement and Concrete Research
123
(September
2019
): 105786, https://doi.org/10.1016/j.cemconres.2019.105786
30.
Carette
G. G.
and
Malhotra
V. M.
, “
Long-Term Strength Development of Silica Fume Concrete
,”
ACI Symposium Paper
132
(May
1992
):
1017
1044
, https://doi.org/10.14359/2383
31.
Khedr
S. A.
and
Abou-Zeid
M. N.
, “
Characteristics of Silica-Fume Concrete
,”
Journal of Materials in Civil Engineering
6
, no. 
3
(August
1994
):
357
375
, https://doi.org/10.1061/(ASCE)0899-1561(1994)6:3(357)
32.
Kjellsen
K. O.
,
Wallevik
O. H.
, and
Hallgren
M.
, “
On the Compressive Strength Development of High-Performance Concrete and Paste—Effect of Silica Fume
,”
Materials and Structures
32
, no. 
1
(January
1999
): 63, https://doi.org/10.1007/BF02480414
33.
Mak
S. L.
and
Torii
K.
, “
Strength Development of High Strength Concretes with and without Silica Fume under the Influence of High Hydration Temperatures
,”
Cement and Concrete Research
25
, no. 
8
(December
1995
):
1791
1802
, https://doi.org/10.1016/0008-8846(95)00175-1
34.
Wild
S.
,
Sabir
B. B.
, and
Khatib
J. M.
, “
Factors Influencing Strength Development of Concrete Containing Silica Fume
,”
Cement and Concrete Research
25
, no. 
7
(October
1995
):
1567
1580
, https://doi.org/10.1016/0008-8846(95)00150-B
35.
Burroughs
J. F.
,
Weiss
J.
, and
Haddock
J. E.
, “
Influence of High Volumes of Silica Fume on the Rheological Behavior of Oil Well Cement Pastes
,”
Construction and Building Materials
203
(April
2019
):
401
407
, https://doi.org/10.1016/j.conbuildmat.2019.01.027
36.
Lin
Y.
,
Yan
J.
,
Wang
Z.
,
Fan
F.
, and
Zou
C.
, “
Effect of Silica Fumes on Fluidity of UHPC: Experiments, Influence Mechanisms, and Evaluation Methods
,”
Construction and Building Materials
210
(June
2019
):
451
460
, https://doi.org/10.1016/j.conbuildmat.2019.03.162
37.
Meng
W.
,
Kumar
A.
, and
Khayat
K. H.
, “
Effect of Silica Fume and Slump-Retaining Polycarboxylate-Based Dispersant on the Development of Properties of Portland Cement Paste
,”
Cement and Concrete Composites
99
(May
2019
):
181
190
, https://doi.org/10.1016/j.cemconcomp.2019.03.021
38.
Tai
Y.-S.
,
El-Tawil
S.
,
Meng
B.
, and
Hansen
W.
, “
Parameters Influencing Fluidity of UHPC and Their Effect on Mechanical and Durability Properties
,”
Journal of Materials in Civil Engineering
32
, no. 
10
(October
2020
): 04020298, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003392
39.
Wetzel
A.
and
Middendorf
B.
, “
Influence of Silica Fume on Properties of Fresh and Hardened Ultra-High Performance Concrete Based on Alkali-Activated Slag
,”
Cement and Concrete Composites
100
(July
2019
):
53
59
, https://doi.org/10.1016/j.cemconcomp.2019.03.023
40.
Burroughs
J. F.
,
Weiss
C. A.
 Jr.
,
Haddock
J. E.
, and
Weiss
W. J.
, “
Modeling Early-Age Rheology of Cement-Silica Fume Pastes
,”
ACI Materials Journal
117
, no. 
4
(July
2020
):
133
139
, https://doi.org/10.14359/51724626
41.
De Larrard
F.
,
Gorse
J.-F.
, and
Puch
C.
, “
Comparative Study of Various Silica Fumes as Additives in High-Performance Cementitious Materials
,”
Materials and Structures
25
, no. 
5
(June
1992
):
265
272
, https://doi.org/10.1007/BF02472667
42.
Williams
E. M.
,
Graham
S. S.
,
Reed
P. A.
, and
Rushing
T. S.
,
Laboratory Characterization of Cor-Tuf Concrete with and without Steel Fibers, ERDC/GSL TR-09-22
(
Vicksburg, MS
:
US Army Engineer Research and Development Center, Geotechnical and Structures Laboratory
,
2009
).
43.
Green
B.
,
Moser
R.
,
Scott
D.
, and
Long
W.
, “
Ultra-High Performance Concrete History and Usage by the Corps of Engineers
,”
Advances in Civil Engineering Materials
4
, no. 
2
(
2015
):
132
143
, https://doi.org/10.1520/ACEM20140031
44.
Standard Specification for Chemical Admixtures for Concrete
, ASTM C494/C494M-19 (
West Conshohocken, PA
:
ASTM International
, approved December 15,
2019
), https://doi.org/10.1520/C0494_C0494M-19
45.
Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
, ASTM C192/C192M-19 (
West Conshohocken, PA
:
ASTM International
, approved December 1,
2019
), https://doi.org/10.1520/C0192_C0192M-19
46.
Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes
, ASTM C511-19 (
West Conshohocken, PA
:
ASTM International
, approved June 15,
2019
), https://doi.org/10.1520/C0511-19
47.
Carey
A. S.
, “
Laboratory Testing Protocols to Represent Thermo-mechanical Signatures of High Strength Concretes in Medium to Mass Sized Placements
” (PhD diss.,
Mississippi State University
,
2021
).
48.
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
, ASTM C39/C39M-21 (
West Conshohocken, PA
:
ASTM International
, approved March 1,
2021
), https://doi.org/10.1520/C0039_C0039M-21
49.
Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression
, ASTM C469/C469M-14 (
West Conshohocken, PA
:
ASTM International
, approved March 1,
2014
), https://doi.org/10.1520/C0469_C0469M-14E01
50.
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
, ASTM C496/C496M-17 (
West Conshohocken, PA
:
ASTM International
, approved October 1,
2017
), https://doi.org/10.1520/C0496_C0496M-17
51.
Standard Practice for Evaluating Early Hydration of Hydraulic Cementitious Mixtures Using Thermal Measurements
, ASTM C1753/C1753M-15 (
West Conshohocken, PA
:
ASTM International
, approved August 1,
2015
), https://doi.org/10.1520/C1753_C1753M-15E01
52.
Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance
, ASTM C403/C403M-16 (
West Conshohocken, PA
:
ASTM International
, approved October 1,
2016
), https://doi.org/10.1520/C0403_C0403M-16
53.
Howard
I. L.
,
Hansen
B.
, and
Cost
V. T.
, “
Comparison of Thermally Measured Setting of Cement Paste and Penetrometer Measured Setting of Ready Mixed Concrete
,”
Journal of Testing and Evaluation
49
, no. 
3
(May 2021):
1550
1569
, https://doi.org/10.1520/JTE20180745
54.
Howard
I. L.
,
Allard
T.
,
Carey
A.
,
Priddy
M.
,
Knizley
A.
, and
Shannon
J. D.
,
Development of CORPS-STIF 1.0 with Application to Ultra-High Performance Concrete (UHPC), ERDC/GSL TR-21-14
(
Vicksburg, MS
:
U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory
,
2021
).
55.
Rao
G. A.
, “
Investigations on the Performance of Silica Fume-Incorporated Cement Pastes and Mortars
,”
Cement and Concrete Research
33
, no. 
11
(November
2003
):
1765
1770
, https://doi.org/10.1016/S0008-8846(03)00171-6
56.
Sounthararajan
V. M.
,
Srinivasan
K.
, and
Sivakumar
A.
, “
Micro Filler Effects of Silica-Fume on the Setting and Hardened Properties of Concrete
,”
Research Journal of Applied Sciences, Engineering and Technology
6
, no. 
14
(August
2013
):
2649
2654
, https://doi.org/10.19026/rjaset.6.3753
57.
Arel
H. Ş.
, “
Effects of Curing Type, Silica Fume Fineness, and Fiber Length on the Mechanical Properties and Impact Resistance of UHPFRC
,”
Results in Physics
6
(
2016
):
664
674
, https://doi.org/10.1016/j.rinp.2016.09.016
58.
Kadri
E.
and
Duval
R.
, “
Hydration Heat Kinetics of Concrete with Silica Fume
,”
Construction and Building Materials
23
, no. 
11
(November
2009
):
3388
3392
, https://doi.org/10.1016/j.conbuildmat.2009.06.008
59.
Langan
B. W.
,
Weng
K.
, and
Ward
M. A.
, “
Effect of Silica Fume and Fly Ash on Heat of Hydration of Portland Cement
,”
Cement and Concrete Research
32
, no. 
7
(July
2002
):
1045
1051
, https://doi.org/10.1016/S0008-8846(02)00742-1
60.
Wu
Z.
,
Shi
C.
, and
Khayat
K. H.
, “
Influence of Silica Fume Content on Microstructure Development and Bond to Steel Fiber in Ultra-High Strength Cement-Based Materials (UHSC)
,”
Cement and Concrete Composites
71
(August
2016
):
97
109
, https://doi.org/10.1016/j.cemconcomp.2016.05.005
61.
Carey
A. S.
,
Howard
I. L.
,
Scott
D. A.
,
Moser
R. D.
,
Shannon
J.
, and
Knizley
A.
, “
Impact of Materials, Proportioning, and Curing on Ultra-High-Performance Concrete Properties
,”
ACI Materials Journal
117
, no. 
1
(January
2020
):
213
222
, https://doi.org/10.14359/51719076
This content is only available via PDF.
You do not currently have access to this content.