Abstract

Measuring electrical resistivity is becoming a desirable method for evaluating the material property in cement-based materials. As a rapid nondestructive technique, measurement of resistivity is frequently performed both in laboratory specimens and on-site structures. Alternating current/potential (AC)-based methods are common approaches to measure the resistivity in cement-based materials. The alternating perturbation amplitudes applied range from several millivolts to even volts. However, how the perturbation amplitude influences the results, and what are the optimal frequency and perturbation amplitude are still in question. In the present study, AC resistance measurements using electrochemical impedance spectroscopy were performed on cement-based specimens with different compositions. To investigate the effect of perturbation amplitude on the measured resistance, different amplitudes of potential perturbation varying from 5 mV up to 1,000 mV were applied. The reliability of data was evaluated by the harmonic analyses. Results indicated that, as the resistivity of specimens increased, a slight decrease in the fR (i.e., the frequency at which the ohmic resistance is measured) was observed. Noticeably, significant scatter in fR was demonstrated by applying different potential perturbations, especially for amplitudes lower than 50 mV. In terms of the perturbation amplitude, the results of resistivity were generally maintained in a relatively small variation when the potential perturbation was higher than 100 mV. Based on harmonic analyses, the appropriate frequency and perturbation amplitude for measuring the resistance of cement-based materials were determined.

References

1.
Yehia
S.
,
Qaddoumi
N.
,
Hassan
M.
, and
Swaked
B.
, “
Conductive Concrete for Electromagnetic Shielding Applications
,”
Advances in Civil Engineering Materials
3
, no. 
1
(May
2014
): 20130107, https://doi.org/10.1520/ACEM20130107
2.
Razmjoo
A.
and
Poursaee
A.
, “
Finite Element Modeling of Chloride Diffusion in Concrete Using Image Processing for Characterizing Real Shape and Distribution of Different Phases
,”
Advances in Civil Engineering Materials
5
, no. 
1
(July
2016
):
167
178
, https://doi.org/10.1520/ACEM20150032
3.
Torbati-Sarraf
H.
and
Poursaee
A.
, “
Study of the Passivation of Carbon Steel in Simulated Concrete Pore Solution Using Scanning Electrochemical Microscope (SECM)
,”
Materialia
2
(October
2018
):
19
22
, https://doi.org/10.1016/j.mtla.2018.08.011
4.
Rostami
S.
,
Mahdavi
S.
,
Alinezhadfar
M.
, and
Mohseni
A.
, “
Tribological and Corrosion Behavior of Electrochemically Deposited Co/TiO2 Micro/Nano-composite Coatings
,”
Surface and Coatings Technology
423
(October
2021
): 127591, https://doi.org/10.1016/j.surfcoat.2021.127591
5.
Milla
J.
,
Cavalline
T. L.
,
Rupnow
T. D.
,
Melugiri-Shankaramurthy
B.
,
Lomboy
G.
, and
Wang
K.
, “
Methods of Test for Concrete Permeability: A Critical Review
,”
Advances in Civil Engineering Materials
10
, no. 
1
(April
2021
):
172
209
, https://doi.org/10.1520/ACEM20200067
6.
Alarab
L. A.
,
Ross
B. E.
, and
Poursaee
A.
, “
The Impact of Repair Method on the Chloride-Induced Corrosion of Steel Embedded in Cracked Concrete
,”
Advances in Civil Engineering Materials
9
, no. 
1
(March
2020
):
143
151
, https://doi.org/10.1520/ACEM20190200
7.
Thoresen
A.-M.
,
Hornbostel
K.
, and
Geiker
M. R.
, “
Frequency Dependency of Concrete Resistance Measurements
,” in
Concrete Solutions: Proceedings of Concrete Solutions, Sixth International Conference on Concrete Repair, Thessaloniki, Greece, 20–23 June 2016
(
Leiden, the Netherlands
:
CRC Press
,
2016
),
239
246
.
8.
Spragg
R.
,
Bu
Y.
,
Snyder
K.
,
Bentz
D.
, and
Weiss
J.
,
Electrical Testing of Cement-Based Materials: Role of Testing Techniques, Sample Conditioning, and Accelerated Curing, FHWA/IN/JTRP-2013/28
(
Indianapolis, IN
:
Indiana Department of Transportation
,
2013
).
9.
Neithalath
N.
,
Weiss
J.
, and
Olek
J.
, “
Characterizing Enhanced Porosity Concrete Using Electrical Impedance to Predict Acoustic and Hydraulic Performance
,”
Cement and Concrete Research
36
, no. 
11
(November
2006
):
2074
2085
, https://doi.org/10.1016/j.cemconres.2006.09.001
10.
Torbati-Sarraf
H.
,
Ding
L.
,
Khakpour
I.
, and
Poursaee
A.
, “
Electrochemical Impedance Spectroscopic Analyses of the Influence of the Urface Nannocrystallization on the Passivation of Carbon Steel in the Pore Solution
,”
Journal of Materials in Civil Engineering
33
, no. 
1
(January
2021
): 04020419, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003523
11.
Mehrazi
S.
,
Moran
A. J.
,
Arnold
J. L.
,
Buchheit
R. G.
, and
Lillard
R. S.
, “
The Electrochemistry of Copper Release from Stainless Steels and Its Role in Localized Corrosion
,”
Journal of The Electrochemical Society
165
, no. 
13
(January
2018
):
C860
C868
, https://doi.org/10.1149/2.0071813jes
12.
Gu
X.-L.
,
Dong
Z.
,
Yuan
Q.
, and
Zhang
W.-P.
, “
Corrosion of Stirrups under Different Relative Humidity Conditions in Concrete Exposed to Chloride Environment
,”
Journal of Materials in Civil Engineering
32
, no. 
1
(January
2020
): 04019329, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003001
13.
Sengul
O.
, “
Use of Electrical Resistivity as an Indicator for Durability
,”
Construction and Building Materials
73
(December
2014
):
434
441
, https://doi.org/10.1016/j.conbuildmat.2014.09.077
14.
Hansson
C. M.
,
Poursaee
A.
, and
Laurent
A.
, “
Macrocell and Microcell Corrosion of Steel in Ordinary Portland Cement and High Performance Concretes
,”
Cement and Concrete Research
36
, no. 
11
(November
2006
):
2098
2102
, https://doi.org/10.1016/j.cemconres.2006.07.005
15.
Rajabipour
F.
and
Weiss
J.
, “
Electrical Conductivity of Drying Cement Paste
,”
Materials and Structures
40
(December
2007
):
1143
1160
, https://doi.org/10.1617/s11527-006-9211-z
16.
Yildirim
H.
,
Ilica
T.
, and
Sengul
O.
, “
Effect of Cement Type on the Resistance of Concrete against Chloride Penetration
,”
Construction and Building Materials
25
, no. 
3
(March
2011
):
1282
1288
, https://doi.org/10.1016/j.conbuildmat.2010.09.023
17.
Mendes
S. E. S.
,
Oliveira
R. L. N.
,
Cremonez
C.
,
Pereira
E.
,
Pereira
E.
, and
Medeiros-Junior
R. A.
, “
Electrical Resistivity as a Durability Parameter for Concrete Design: Experimental Data versus Estimation by Mathematical Model
,”
Construction and Building Materials
192
(December
2018
):
610
620
, https://doi.org/10.1016/j.conbuildmat.2018.10.145
18.
Spragg
R.
,
Villani
C.
,
Snyder
K.
,
Bentz
D.
,
Bullard
J. W.
, and
Weiss
J.
, “
Factors that Influence Electrical Resistivity Measurements in Cementitious Systems
,”
Transportation Research Record
2342
, no. 
1
(January
2013
):
90
98
, https://doi.org/10.3141/2342-11
19.
Ghosh
P.
and
Tran
Q.
, “
Influence of Parameters on Surface Resistivity of Concrete
,”
Cement and Concrete Composites
62
(September
2015
):
134
145
, https://doi.org/10.1016/j.cemconcomp.2015.06.003
20.
Bertolini
L.
and
Polder
R. B.
,
Concrete Resistivity and Reinforcement Corrosion Rate as a Function of Temperature and Humidity of the Environment, TNO Report 97-BT-R0574
(
Delft, the Netherlands
:
TNO
,
1997
).
21.
Avellaneda
M.
and
Torquato
S.
, “
Rigorous Link between Fluid Permeability, Electrical Conductivity, and Relaxation Times for Transport in Porous Media
,”
Physics of Fluid A: Fluid Dynamics
3
(July
1991
):
2529
2540
, https://doi.org/10.1063/1.858194
22.
Garboczi
E. J.
, “
Permeability, Diffusivity, and Microstructural Parameters: A Critical Review
,”
Cement and Concrete Research
20
, no. 
4
(July
1990
):
591
601
, https://doi.org/10.1016/0008-8846(90)90101-3
23.
Lu
X.
, “
Application of the Nernst-Einstein Equation to Concrete
,”
Cement and Concrete Research
27
, no. 
2
(February
1997
):
293
302
, https://doi.org/10.1016/S0008-8846(96)00200-1
24.
Akiyama
M.
, “
Durability Design of Concrete Structures in Severe Environments
,”
Structure and Infrastructure Engineering
7
, nos. 
1–2
(
2011
): 197, https://doi.org/10.1080/15732470903027736
25.
Jain
S.
and
Pradhan
B.
, “
Corrosion Behavior of Steel Reinforcement in Chloride Admixed Self-Compacting Concrete Subjected to Different Exposure Conditions
,”
Advances in Civil Engineering Materials
9
, no. 
1
(September
2020
):
463
478
, https://doi.org/10.1520/ACEM20200021
26.
Feliu
S.
,
Andrade
C.
,
González
J. A.
, and
Alonso
C.
, “
A New Method for In-Situ Measurement of Electrical Resistivity of Reinforced Concrete
,”
Materials and Structures
29
(July
1996
):
362
365
, https://doi.org/10.1007/bf02486344
27.
Polder
R.
,
Andrade
C.
,
Elsener
B.
,
Vennesland
Ø.
,
Gulikers
J.
,
Weidert
R.
, and
Raupach
M.
, “
Electrochemical Techniques for on Site Measurement of Resistivity of Concrete
,”
Materials and Structures
33
(December
2000
):
603
611
, https://doi.org/10.1007/BF02480599
28.
McCarter
W. J.
,
Taha
H. M.
,
Suryanto
B.
, and
Starrs
G.
, “
Two-Point Concrete Resistivity Measurements: Interfacial Phenomena at the Electrode-Concrete Contact Zone
,”
Measurement Science and Technology
26
, no. 
8
(August
2015
): 085007, https://doi.org/10.1088/0957-0233/26/8/085007
29.
Sanchez
J.
,
Andrade
C.
,
Torres
J.
,
Rebolledo
N.
, and
Fullea
J.
, “
Determination of Reinforced Concrete Durability with On-Site Resistivity Measurements
,”
Materials and Structures
50
, no. 
1
(
2017
): 41, https://doi.org/10.1617/s11527-016-0884-7
30.
Azarsa
P.
and
Gupta
R.
, “
Electrical Resistivity of Concrete for Durability Evaluation: A Review
,”
Advances in Materials Science and Engineering
2017
(May
2017
): 8453095, https://doi.org/10.1155/2017/8453095
31.
Torbati-Sarraf
H.
and
Poursaee
A.
, “
The Influence of Phase Distribution and Microstructure of the Carbon Steel on Its Chloride Threshold Value in a Simulated Concrete Pore Solution
,”
Construction and Building Materials
259
(October
2020
): 119784, https://doi.org/10.1016/j.conbuildmat.2020.119784
32.
Standard Test Method for Bulk Electrical Conductivity of Hardened Concrete
(Withdrawn), ASTM C1760-12 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2012
).
33.
Mosavinejad
S. H. G.
,
Ghanizadeh
A.
, and
Barandoust
J.
, “
Electrode Material as a Decisive Factor in Electrical Resistivity Measurement of Cement Composites
,”
Journal of Building Engineering
25
(September
2019
): 100778, https://doi.org/10.1016/j.jobe.2019.100778
34.
Lillard
R. S.
and
Mehrazi
S.
, “
Quantifying Alloy 625 Crevice Corrosion Using an Image Differencing Technique: Part III. The Transition from Diffusion to Activation Control and the Implications for the Measured Electrochemical Potentials
,”
Journal of The Electrochemical Society
168
, no. 
2
(February
2021
): 021511, https://doi.org/10.1149/1945-7111/abe47b
35.
Mehrazi
S.
,
Sarker
M.
,
Mojica
F.
,
Rolfe
P.
, and
Chuang
P.-Y. A.
, “
A Rheological Approach to Studying Process-Induced Structural Evolution of the Microporous Layer in a Proton Exchange Membrane Fuel Cell
,”
Electrochimica Acta
389
(September
2021
): 138690, https://doi.org/10.1016/j.electacta.2021.138690
36.
Dong
Z.
,
Torbati-Sarraf
H.
,
Hussein
H. Z.
, and
Poursaee
A.
, “
Harmonic Analysis on the Effect of Potential Perturbations and Electrodes Arrangements on the Electrochemical Impedance (EIS) Measurement of Cementitious Material
,”
Construction and Building Materials
273
(March
2021
): 121701, https://doi.org/10.1016/j.conbuildmat.2020.121701
37.
Gudimettla
J.
and
Crawford
G.
, “
Resistivity Tests for Concrete—Recent Field Experience
,”
ACI Materials Journal
113
, no. 
4
(
2016
):
505
512
, https://doi.org/10.14359/51688830
38.
Wang
Z.
,
Feng
G.
,
Qi
T.
,
Guo
Y.
, and
Du
X.
, “
Evaluation of Static Segregation of Cemented Gangue-Fly Ash Backfill Material Using Electrical Resistivity Method
,”
Measurement
154
(March
2020
): 107483, https://doi.org/10.1016/j.measurement.2020.107483
39.
Dong
Z.
,
Gu
X.-L.
,
Jin
Z.-H.
,
Poursaee
A.
, and
Ye
H.
, “
Experimental and Numerical Investigations on the Rate-Limiting Step for Macrocell Corrosion of Reinforcing Steel in Concrete
,”
Journal of Materials in Civil Engineering
34
, no. 
1
(January
2022
): 04021407, https://doi.org/10.1061/(ASCE)MT.1943-5533.0004042
40.
Yeganeh
M.
,
Shoushtari
M. T.
, and
Jalali
P.
, “
Evaluation of the Corrosion Performance of Selective Laser Melted 17-4 Precipitation Hardening Stainless Steel in Ringer’s Solution
,”
Journal of Laser Applications
33
, no. 
4
(September
2021
): 042001, https://doi.org/10.2351/7.0000445
41.
Poursaee
A.
and
Weiss
W. J.
, “
An Automated Electrical Monitoring System (AEMS) to Assess Property Development in Concrete
,”
Automation in Construction
19
, no. 
4
(July
2010
):
485
490
, https://doi.org/10.1016/j.autcon.2009.12.016
42.
Suryanto
B.
,
Takaoka
H.
,
McCater
W. J.
,
Saraireh
D.
, and
Taha
H.
, “
Impedance Measurements on an Engineered Cementitious Composite: A Critical Evaluation of Testing Protocols
,”
Measurement
129
(December
2018
):
445
456
, https://doi.org/10.1016/j.measurement.2018.07.066
43.
Wenner
F.
, “
A Method of Measuring Earth Resistivity
,”
Bulletin of the National Bureau of Standards
12
(
1916
):
469
478
, https://doi.org/10.6028/bulletin.282
44.
Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method
, ASTM G57-06(2012) (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2012
), https://doi.org/10.1520/G0057-06R12
45.
Lim
Y.-C.
,
Kim
T.-S.
, and
Hwang
C.-S.
, “
Modeling for Apparent Resistivity Estimation along Direction of Electrode Array above Rebar in Electrical Resistivity Measurement
,”
Journal of Building Engineering
31
(September
2020
): 101417, https://doi.org/10.1016/j.jobe.2020.101417
46.
Sengul
O.
and
Gjørv
O. E.
, “
Effect of Embedded Steel on Electrical Resistivity Measurements on Concrete Structures
,”
ACI Materials Journal
106
, no. 
1
(January
2009
):
11
18
.
47.
Morris
W.
,
Moreno
E. I.
, and
Sagüés
A. A.
, “
Practical Evaluation of Resistivity of Concrete in Test Cylinders Using a Wenner Array Probe
,”
Cement and Concrete Research
26
, no. 
12
(December
1996
):
1779
1787
, https://doi.org/10.1016/S0008-8846(96)00175-5
48.
Garzon
A. J.
,
Sanchez
J.
,
Andrade
C.
,
Rebolledo
N.
,
Menéndez
E.
, and
Fullea
J.
, “
Modification of Four Point Method to Measure the Concrete Electrical Resistivity in Presence of Reinforcing Bars
,”
Cement and Concrete Composites
53
(October
2014
):
249
257
, https://doi.org/10.1016/j.cemconcomp.2014.07.013
49.
Ruan
T.
and
Poursaee
A.
, “
Surface and Subsurface Damage Detection in Cement-Based Materials Using Electrical Resistance Tomography
,” in
Proceedings Volume 9803, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016
(
Bellingham, WA
:
The International Society for Optics and Photonics
,
2016
), 980318, https://doi.org/10.1117/12.2218958
50.
du Plooy
R.
,
Palma Lopes
S.
,
Villain
G.
, and
Dérobert
X.
, “
Development of a Multi-ring Resistivity Cell and Multi-electrode Resistivity Probe for Investigation of Cover Concrete Condition
,”
NDT & E International
54
(March
2013
):
27
36
, https://doi.org/10.1016/j.ndteint.2012.11.007
51.
Fares
M.
,
Villain
G.
,
Fargier
Y.
,
Thiery
M.
,
Dérobert
X.
, and
Palma Lopes
S.
, “
Estimation of Water Content Gradient and Concrete Durability Indicators Using Capacitive and Electrical Probes
” (paper presentation,
International Symposium Non-destructive Testing in Civil Engineering (NDT-CE)
,
Berlin, Germany
, September 15–17,
2015
).
52.
Reichling
K.
,
Raupach
M.
, and
Klitzsch
N.
, “
Determination of the Distribution of Electrical Resistivity in Reinforced Concrete Structures Using Electrical Resistivity Tomography
,”
Materials and Corrosion
66
, no. 
8
(August
2015
):
763
771
, https://doi.org/10.1002/maco.201407763
53.
Guthrie
W. S.
,
Baxter
J. S.
, and
Mazzeo
B. A.
, “
Vertical Electrical Impedance Testing of a Concrete Bridge Deck Using a Rolling Probe
,”
NDT & E International
95
(April
2018
):
65
71
, https://doi.org/10.1016/j.ndteint.2018.01.006
54.
Badr
J.
,
Fargier
Y.
,
Palma-Lopes
S.
,
Deby
F.
,
Balayssac
J.-P.
,
Delepine-Lesoille
S.
,
Cottineau
L.-M.
, and
Villain
G.
, “
Design and Validation of a Multi-electrode Embedded Sensor to Monitor Resistivity Profiles over Depth in Concrete
,”
Construction and Building Materials
223
(October
2019
):
310
321
, https://doi.org/10.1016/j.conbuildmat.2019.06.226
55.
Priou
J.
,
Lecieux
Y.
,
Chevreuil
M.
,
Gaillard
V.
,
Lupi
C.
,
Leduc
D.
,
Rozière
E.
,
Guyard
R.
, and
Schoefs
F.
, “
In Situ DC Electrical Resistivity Mapping Performed in a Reinforced Concrete Wharf Using Embedded Sensors
,”
Construction and Building Materials
211
(June
2019
):
244
260
, https://doi.org/10.1016/j.conbuildmat.2019.03.152
56.
Mahmoudi
E.
,
Mohitfar
S. H.
, and
Mahdavi
S.
, “
Characteristics and Corrosion Behavior of As-Deposited and Heat-Treated Co–Cr/ZrO2 Coatings Electrodeposited from Cr(III) Baths
,”
Materials Chemistry and Physics
272
(November
2021
): 125030, https://doi.org/10.1016/j.matchemphys.2021.125030
57.
Banthia
N.
,
Djeridane
S.
, and
Pigeon
M.
, “
Electrical Resistivity of Carbon and Steel Micro-fiber Reinforced Cements
,”
Cement and Concrete Research
22
, no. 
5
(September
1992
):
804
814
, https://doi.org/10.1016/0008-8846(92)90104-4
58.
Hansson
I. L. H.
and
Hansson
C. M.
, “
Electrical Resistivity Measurements of Portland Cement Based Materials
,”
Cement and Concrete Research
13
, no. 
5
(September
1983
):
675
683
, https://doi.org/10.1016/0008-8846(83)90057-1
59.
Cao
J.
and
Chung
D. D. L.
, “
Electric Polarization and Depolarization in Cement-Based Materials, Studied by Apparent Electrical Resistance Measurement
,”
Cement and Concrete Research
34
, no. 
3
(March
2004
):
481
485
, https://doi.org/10.1016/j.cemconres.2003.09.003
60.
Madhavi
T. C.
and
Annamalai
S.
, “
Electrical Conductivity of Concrete
,”
ARPN Journal of Engineering and Applied Sciences
11
, no. 
9
(May
2016
):
5979
5982
.
61.
Lataste
J. F.
,
De Larrard
T.
,
Benboudjema
F.
, and
Semenadisse
J.
, “
Study of Electrical Resistivity: Variability Assessment on Two Concretes: Protocol Study in Laboratory and Assessment on Site
,”
European Journal of Environmental and Civil Engineering
16
, nos. 
3–4
(April
2012
):
298
310
, https://doi.org/10.1080/19648189.2012.667708
62.
Lecieux
Y.
,
Schoefs
F.
,
Bonnet
S.
,
Lecieux
T.
, and
Palma Lopes
S.
, “
Quantification and Uncertainty Analysis of a Structural Monitoring Device: Detection of Chloride in Concrete Using DC Electrical Resistivity Measurement
,”
Nondestructive Testing and Evaluation
30
, no. 
3
(May
2015
):
216
232
, https://doi.org/10.1080/10589759.2015.1029476
63.
Barsoukov
E.
and
Macdonald
J. R.
,
Impedance Spectroscopy: Theory, Experiment, and Applications
, 2nd ed. (
Hoboken, NJ
:
John Wiley & Sons, Inc.
,
2005
), https://doi.org/10.1002/0471716243
64.
Orazem
M. E.
and
Tribollet
B.
,
Electrochemical Impedance Spectroscopy
(
Hoboken, NJ
:
John Wiley & Sons
,
2008
).
65.
Giner-Sanz
J. J.
,
Ortega
E. M.
, and
Pérez-Herranz
V.
, “
Total Harmonic Distortion Based Method for Linearity Assessment in Electrochemical Systems in the Context of EIS
,”
Electrochimica Acta
186
(December
2015
):
598
612
, https://doi.org/10.1016/j.electacta.2015.10.152
66.
Angst
U. M.
and
Elsener
B.
, “
On the Applicability of the Wenner Method for Resistivity Measurements of Concrete
,”
ACI Materials Journal
111
, no. 
6
(November
2014
):
661
672
, https://doi.org/10.14359/51686831
67.
Layssi
H.
,
Ghods
P.
,
Alizadeh
A. R.
, and
Salehi
M.
, “
Electrical Resistivity of Concrete
,”
Concrete International
37
(May
2015
):
41
46
.
68.
Gowers
K. R.
and
Millard
S. G.
, “
Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique
,”
ACI Materials Journal
96
, no. 
5
(
1999
):
536
541
.
69.
Østvik
J.-M.
,
Larsen
C. K.
,
Vennesland
Ø.
,
Sellevold
E. J.
, and
Andrade
C.
, “
Electrical Resistivity of Concrete Part I: Frequency Dependence at Various Moisture Contents and Temperatures
” (paper presentation, Second International Symposium on Advances in Concrete through Science and Engineering, Quebec City, Canada, September 11–13,
2006
).
70.
Hornbostel
K.
,
Angst
U. M.
,
Elsener
B.
,
Larsen
C. K.
, and
Geiker
M. R.
, “
On the Limitations of Predicting the Ohmic Resistance in a Macro-cell in Mortar from Bulk Resistivity Measurements
,”
Cement and Concrete Research
76
(October
2015
):
147
158
, https://doi.org/10.1016/j.cemconres.2015.05.023
71.
Hornbostel
K.
,
Angst
U. M.
,
Elsener
B.
,
Larsen
C. K.
, and
Geiker
M. R.
, “
Influence of Mortar Resistivity on the Rate-Limiting Step of Chloride-Induced Macro-cell Corrosion of Reinforcing Steel
,”
Corrosion Science
110
(September
2016
):
46
56
, https://doi.org/10.1016/j.corsci.2016.04.011
72.
Gopalakrishnan
R.
and
Nithiyanantham
S.
, “
Microstructural, Mechanical, and Electrical Properties of Copper Slag Admixtured Cement Mortar
,”
Journal of Building Engineering
31
(September
2020
): 101375, https://doi.org/10.1016/j.jobe.2020.101375
73.
Idrissi
H.
and
Limam
A.
, “
Study and Characterization by Acoustic Emission and Electrochemical Measurements of Concrete Deterioration Caused by Reinforcement Steel Corrosion
,”
NDT & E International
36
, no. 
8
(December
2003
):
563
569
, https://doi.org/10.1016/S0963-8695(03)00064-1
74.
Tang
K.
, “
Stray Current Induced Corrosion of Steel Fibre Reinforced Concrete
,”
Cement and Concrete Research
100
(October
2017
):
445
456
, https://doi.org/10.1016/j.cemconres.2017.08.004
75.
Husain
A.
,
Kupwade-Patil
K.
,
Al-Aibani
A. F.
, and
Abdulsalam
M. F.
, “
In Situ Electrochemical Impedance Characterization of Cement Paste with Volcanic Ash to Examine Early Stage of Hydration
,”
Construction and Building Materials
133
(February
2017
):
107
117
, https://doi.org/10.1016/j.conbuildmat.2016.12.054
76.
Falzone
G.
,
Balonis
M.
,
Bentz
D.
,
Jones
S.
, and
Sant
G.
, “
Anion Capture and Exchange by Functional Coatings: New Routes to Mitigate Steel Corrosion in Concrete Infrastructure
,”
Cement and Concrete Research
101
(November
2017
):
82
92
, https://doi.org/10.1016/j.cemconres.2017.08.021
77.
Aguayo
M.
,
Yang
P.
,
Vance
K.
,
Sant
G.
, and
Neithalath
N.
, “
Electrically Driven Chloride Ion Transport in Blended Binder Concretes: Insights from Experiments and Numerical Simulations
,”
Cement and Concrete Research
66
(December
2014
):
1
10
, https://doi.org/10.1016/j.cemconres.2014.07.022
78.
McCarter
W. J.
,
Starrs
G.
,
Adamson
A.
,
Chrisp
T. M.
,
Basheer
P. A. M.
,
Nanukuttan
S.
,
Srinivasan
S.
, and
Green
C.
,
“Influence of Different European Cements on the Hydration of Cover-Zone Concrete during the Curing and Postcuring Periods,”
Journal of Materials in Civil Engineering
25
, no. 
9
(September
2013
):
1335
1343
, https://doi.org/10.1061/(asce)mt.1943-5533.0000678
79.
McCarter
W. J.
,
Chrisp
T. M.
,
Starrs
G.
,
Adamson
A.
,
Basheer
P. A. M.
,
Nanukuttan
S. V.
,
Srinivasan
S.
, and
Green
C.
, “
Characterization of Physio-chemical Processes and Hydration Kinetics in Concretes Containing Supplementary Cementitious Materials Using Electrical Property Measurements
,”
Cement and Concrete Research
50
(August
2013
):
26
33
, https://doi.org/10.1016/j.cemconres.2013.03.008
80.
Adamson
M.
,
Razmjoo
A.
, and
Poursaee
A.
, “
Durability of Concrete Incorporating Crushed Brick as Coarse Aggregate
,”
Construction and Building Materials
94
(September
2015
):
426
432
, https://doi.org/10.1016/j.conbuildmat.2015.07.056
81.
Berrocal
C. G.
,
Hornbostel
K.
,
Geiker
M. R.
,
Löfgren
I.
,
Lundgren
K.
, and
Bekas
D. G.
, “
Electrical Resistivity Measurements in Steel Fibre Reinforced Cementitious Materials
,”
Cement and Concrete Composites
89
(May
2018
):
216
229
, https://doi.org/10.1016/j.cemconcomp.2018.03.015
82.
McCarter
W. J.
,
Chrisp
T. M.
,
Starrs
G.
,
Adamson
A.
,
Owens
E.
,
Basheer
P. A. M.
,
Nanukuttan
S. V.
,
Srinivasan
S.
, and
Holmes
N.
, “
Developments in Performance Monitoring of Concrete Exposed to Extreme Environments
,”
Journal of Infrastructure Systems
18
, no. 
3
(September
2012
):
167
175
, https://doi.org/10.1061/(ASCE)IS.1943-555X.0000089
83.
Kaisare
N. S.
,
Ramani
V.
,
Pushpavanam
K.
, and
Ramanathan
S.
, “
An Analysis of Drifts and Nonlinearities in Electrochemical Impedance Spectra
,”
Electrochimica Acta
56
, no. 
22
(September
2011
):
7467
7475
, https://doi.org/10.1016/j.electacta.2011.06.112
84.
Darowicki
K.
, “
The Amplitude Analysis of Impedance Spectra
,”
Electrochimica Acta
40
, no. 
4
(March
1995
):
439
445
, https://doi.org/10.1016/0013-4686(94)00303-I
85.
Le
D.
,
Vaidyanathan
V.
,
Vidhate
S.
,
Chung
J.
, and
D’Souza
N.
, “
Electrical Resistivity as a Measure of Change of State in Substrates: Design, Development and Validation of an Automated System
,”
Measurement
44
, no. 
1
(January
2011
):
159
163
, https://doi.org/10.1016/j.measurement.2010.09.040
86.
Popkirov
G. S.
and
Schindler
R. N.
, “
Effect of Sample Nonlinearity on the Performance of Time Domain Electrochemical Impedance Spectroscopy
,”
Electrochimica Acta
40
, no. 
15
(October
1995
):
2511
2517
, https://doi.org/10.1016/0013-4686(95)00075-P
87.
Giner-Sanz
J. J.
,
Ortega
E. M.
, and
Pérez-Herranz
V.
, “
Harmonic Analysis Based Method for Linearity Assessment and Noise Quantification in Electrochemical Impedance Spectroscopy Measurements: Theoretical Formulation and Experimental Validation for Tafelian Systems
,”
Electrochimica Acta
211
(September
2016
):
1076
1091
, https://doi.org/10.1016/j.electacta.2016.06.133
88.
Yu
Z.
and
Ye
G.
, “
The Pore Structure of Cement Paste Blended with Fly Ash
,”
Construction and Building Materials
45
(August
2013
):
30
35
, https://doi.org/10.1016/j.conbuildmat.2013.04.012
89.
Berodier
E.
and
Scrivener
K.
, “
Evolution of Pore Structure in Blended Systems
,”
Cement and Concrete Research
73
(July
2015
):
25
35
, https://doi.org/10.1016/j.cemconres.2015.02.025
90.
Nedunuri
S. S. S. A.
,
Sertse
S. G.
, and
Muhammad
S.
, “
Microstructural Study of Portland Cement Partially Replaced with Fly Ash, Ground Granulated Blast Furnace Slag and Silica Fume as Determined by Pozzolanic Activity
,”
Construction and Building Materials
238
(March
2020
): 117561, https://doi.org/10.1016/j.conbuildmat.2019.117561
91.
Zeng
Q.
,
Li
K.
,
Fen-Chong
T.
, and
Dangla
P.
, “
Pore Structure Characterization of Cement Pastes Blended with High-Volume Fly-Ash
,”
Cement and Concrete Research
42
, no. 
1
(January
2012
):
194
204
, https://doi.org/10.1016/j.cemconres.2011.09.012
92.
Duan
P.
,
Shui
Z.
,
Chen
W.
, and
Shen
C.
, “
Effects of Metakaolin, Silica Fume and Slag on Pore Structure, Interfacial Transition Zone and Compressive Strength of Concrete
,”
Construction and Building Materials
44
(July
2013
):
1
6
, https://doi.org/10.1016/j.conbuildmat.2013.02.075
93.
Wu
Z.
,
Shi
C.
, and
Khayat
K. H.
, “
Influence of Silica Fume Content on Microstructure Development and Bond to Steel Fiber in Ultra-High Strength Cement-Based Materials (UHSC)
,”
Cement and Concrete Composites
71
(August
2016
):
97
109
, https://doi.org/10.1016/j.cemconcomp.2016.05.005
94.
Zhao
S.
and
Sun
W.
, “
Effect of Silica Fume and Fly Ash on Pore Structures of Blended Pastes at Low Water to Binder Ratios
,”
Advances in Cement Research
27
, no. 
9
(October
2015
):
506
514
, https://doi.org/10.1680/adcr.14.00056
95.
Yio
M. H. N.
,
Wong
H. S.
, and
Buenfeld
N. R.
, “
3D Pore Structure and Mass Transport Properties of Blended Cementitious Materials
,”
Cement and Concrete Research
117
(March
2019
):
23
37
, https://doi.org/10.1016/j.cemconres.2018.12.007
96.
Gu
P.
,
Xu
Z.
,
Xie
P.
, and
Beaudoin
J. J.
, “
Application of A.C. Impedance Techniques in Studies of Porous Cementitious Materials: (I): Influence of Solid Phase and Pore Solution on High Frequency Resistance
,”
Cement and Concrete Research
23
, no. 
3
(May
1993
):
531
540
, https://doi.org/10.1016/0008-8846(93)90003-R
97.
Song
G.
, “
Equivalent Circuit Model for AC Electrochemical Impedance Spectroscopy of Concrete
,”
Cement and Concrete Research
30
, no. 
11
(November
2000
):
1723
1730
, https://doi.org/10.1016/S0008-8846(00)00400-2
98.
Nóvoa
X. R.
, “
Electrochemical Aspects of the Steel‐Concrete System. A Review
,”
Journal of Solid State Electrochemistry
20
, no. 
8
(May
2016
):
2113
2125
, https://doi.org/10.1007/s10008-016-3238-z
99.
Cheng-yi
H.
and
Feldman
R. F.
, “
Influence of Silica Fume on the Microstructural Development in Cement Mortars
,”
Cement and Concrete Research
15
, no. 
2
(March
1985
):
285
294
, https://doi.org/10.1016/0008-8846(85)90040-7
100.
Gu
P.
,
Xie
P.
,
Beaudoin
J. J.
, and
Brousseau
R.
, “
A.C. Impedance Spectroscopy (II): Microstructural Characterization of Hydrating Cement-Silica Fume Systems
,”
Cement and Concrete Research
23
, no. 
1
(January
1993
):
157
168
, https://doi.org/10.1016/0008-8846(93)90147-2
101.
Muller
A. C. A.
,
Scrivener
K. L.
,
Skibsted
J.
,
Gajewicz
A. M.
, and
McDonald
P. J.
, “
Influence of Silica Fume on the Microstructure of Cement Pastes: New Insights From 1H NMR Relaxometry
,”
Cement and Concrete Research
74
(August
2015
):
116
125
, https://doi.org/10.1016/j.cemconres.2015.04.005
102.
Masayuki
I.
,
Suzuki
S.
,
Shitanada
I.
, and
Watanabe
K.
, “
Electrochemical Impedance and Complex Capacitance to Interpret Eleectrochemical Capacitor
,”
Electrochemistry
75
, no. 
8
(
2007
):
649
655
, https://doi.org/10.5796/electrochemistry.75.649
103.
Cahan
B. D.
and
Chen
C.-T.
, “
The Nature of the Passive Film on Iron
,”
Journal of the Electrochemical Society
129
, no. 
3
(
1982
):
474
480
.
104.
Torbati-Sarraf
H.
and
Poursaee
A.
, “
Corrosion of Coupled Steels with Different Microstructures in Concrete Environment
,”
Construction and Building Materials
167
(April
2018
):
680
687
, https://doi.org/10.1016/j.conbuildmat.2018.02.083
105.
Xie
P.
,
Gu
P.
,
Xu
Z.
, and
Beaudoin
J. J.
, “
A Rationalized A.C. Impedance Model for Microstructural Characterization of Hydrating Cement Systems
,”
Cement and Concrete Research
23
, no. 
2
(March
1993
):
359
367
, https://doi.org/10.1016/0008-8846(93)90101-E
106.
Yoon
S. S.
,
Kim
H. C.
, and
Hill
R. M.
, “
The Dielectric Response of Hydrating Porous Cement Paste
,”
Journal of Physics D: Applied Physics
29
, no. 
3
(March
1996
):
869
875
.
107.
Leroy
P.
,
Hördt
A.
,
Gaboreau
S.
,
Zimmermann
E.
,
Claret
F.
,
Bücker
M.
,
Stebner
H.
,
Alexander
J.
, “
Spectral Induced Polarization of Low-pH Cement and Concrete
,”
Cement and Concrete Composites
104
(November
2019
): 103397, https://doi.org/10.1016/j.cemconcomp.2019.103397
This content is only available via PDF.
You do not currently have access to this content.