Abstract

This study examines the performance of cementitious systems made using clinker that is typically used to make Type II/V cement, limestone, and supplementary cementitious materials (SCMs). The porosity, formation factor, and pore connectivity of mortars are examined. The mortars are made with ordinary portland cement (OPC), OPC+limestone (LS), and portland limestone cement (PLC) with and without typical commercial SCMs (silica fume, fly ash, and slag). The porosity of both the PLC and OPC+LS mortars is approximately 4 % higher than the porosity of commercial OPC (which typically contains 2–3 % interground limestone) mortar. The porosity of PLC+SCM and OPC+LS+SCM mortars is also 2–6 % higher than the porosity of commercial OPC+ SCM mortars. The mixtures containing SCMs with alumina showed less of an increase in porosity because the limestone reacted with alumina to form carbo-aluminate reaction products. Despite the increase in porosity, there is no statistically significant difference between the formation factor of the PLC, OPC+LS, and OPC mortars without SCM. The PLC+SCM, OPC+LS+SCM, and OPC+SCM mortars had a higher formation factor than the plain OPC/PLC/OPC+LS mortars because of pore refinement. Pore refinement is also observed in PLC and OPC+LS mortars containing SCMs with alumina. The results of this study indicate that PLCs (ASTM C595/C595M-20, Standard Specification for Blended Hydraulic Cements) can be used as a direct replacement for OPCs (ASTM C150/C150M-20, Standard Specification for Portland Cement) without any significant reduction in performance as related to transport.

References

1.
Schneider
M.
,
Romer
M.
,
Tschudin
M.
, and
Bolio
H.
, “
Sustainable Cement Production—Present and Future
,”
Cement and Concrete Research
41
, no. 
7
(July
2011
):
642
650
, https://doi.org/10.1016/j.cemconres.2011.03.019
2.
Worrell
E.
,
Price
L.
,
Martin
N.
,
Hendriks
C.
, and
Ozawa Meida
L.
, “
Carbon Dioxide Emissions from the Global Cement Industry
,”
Annual Review of Energy and the Environment
26
, no. 
1
(
2001
):
303
329
, https://doi.org/10.1146/annurev.energy.26.1.303
3.
Li
C.
,
Gong
X. Z.
,
Cui
S. P.
,
Wang
Z. H.
,
Zheng
Y.
, and
Chi
B. C.
, “
CO2 Emissions Due to Cement Manufacture
,”
Materials Science Forum
685
(June
2011
):
181
187
, https://doi.org/10.4028/www.scientific.net/MSF.685.181
4.
Gartner
E.
, “
Industrially Interesting Approaches to ‘Low-CO2’ Cements
,”
Cement and Concrete Research
34
, no. 
9
(September
2004
):
1489
1498
, https://doi.org/10.1016/j.cemconres.2004.01.021
5.
Tennis
P.
,
Thomas
M. D. A.
, and
Weiss
W. J.
,
State-of-the-Art Report on Use of Limestone in Cements at Levels of Up to 15%, PCA R&D SN3148
(
Skokie, IL
:
Portland Cement Association
,
2011
).
6.
He
Z.
,
Zhu
X.
,
Wang
J.
,
Mu
M.
, and
Wang
Y.
, “
Comparison of CO2 Emissions from OPC and Recycled Cement Production
,”
Construction and Building Materials
211
(June
2019
):
965
973
.
7.
Wang
J.
,
Mu
M.
, and
Liu
Y.
, “
Recycled Cement
,”
Construction and Building Materials
190
(November
2018
):
1124
1132
, https://doi.org/10.1016/j.conbuildmat.2018.09.181
8.
Chopperla
K. S. T.
and
Ideker
J. H.
, “
Using Electrical Resistivity to Determine the Efficiency of Supplementary Cementitious Materials to Prevent Alkali-Silica Reaction in Concrete
,”
Cement and Concrete Composites
125
(January
2022
): 104282.
9.
Environment
UN
,
Scrivener
K. L.
,
John
V. M.
, and
Gartner
E. M.
, “
Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry
,”
Cement and Concrete Research
114
(December
2018
):
2
26
, https://doi.org/10.1016/j.cemconres.2018.03.015
10.
Standard Specification for Portland Cement
, ASTM C150/150M-20 (
West Conshohocken, PA
:
ASTM International
, approved April 1,
2020
), https://doi.org/10.1520/C0150_C0150M-20
11.
Standard Specification for Blended Hydraulic Cements
, ASTM C595-C595M-20 (
West Conshohocken, PA
:
ASTM International
, approved April 1,
2020
), https://doi.org/10.1520/C0595_C0595M-20
12.
Lothenbach
B.
,
Le Saout
G.
,
Gallucci
E.
, and
Scrivener
K.
, “
Influence of Limestone on the Hydration of Portland Cements
,”
Cement and Concrete Research
38
, no. 
6
(June
2008
):
848
860
, https://doi.org/10.1016/j.cemconres.2008.01.002
13.
Matschei
T.
,
Glasser
F. P.
,
Herfort
D.
, and
Lothenbach
B.
, “
Relationships of Cement Paste Mineralogy to Porosity and Mechanical Properties
,” in
Proceedings of International Conference on Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering
(Prague, Czech Republic:
Czech Technical University
,
2007
),
262
263
.
14.
Matschei
T.
,
Lothenbach
B.
, and
Glasser
F. P.
, “
The Role of Calcium Carbonate in Cement Hydration
,”
Cement and Concrete Research
37
, no. 
4
(April
2007
):
551
558
, https://doi.org/10.1016/j.cemconres.2006.10.013
15.
Hawkins
P.
,
Tennis
P.
, and
Detwiler
R.
,
The Use of Limestone in Portland Cement: A State-of-the-Art Review, PCA Engineering Bulletin 227
(Skokie, IL:
Portland Cement Association
,
2005
).
16.
Taylor
H. F.
,
Cement Chemistry
(
London
:
Thomas Telford Publishing
,
1997
).
17.
Isgor
B.
,
Weiss
W.
,
Ideker
J.
,
Trejo
D.
,
Choudhary
A.
,
Chopperla
K. S. T.
,
Bharadwaj
K.
,
Vasudevan
G. D.
,
Ghantous
R. M.
, and
Glosser
D.
,
CALTRANS: Impact of Use of Portland-Limestone Cement on Concrete Performance as Plain or Reinforced Material
(Corvallis, OR:
Oregon State University
, 2021)
18.
Bharadwaj
K.
,
Isgor
B. O.
, and
Weiss
J. W.
, “
Supplementary Cementitious Materials in Portland-Limestone Cements
,”
ACI Materials Journal
119
, no. 
2
(March
2022
):
141
154
.
19.
Damidot
D.
,
Stronach
S.
,
Kindness
A.
,
Atkins
M.
, and
Glasser
F.
, “
Thermodynamic Investigation of the CaO Al2O3 CaCO3 H2O Closed System at 25° C and the Influence of Na2O
,”
Cement and Concrete Research
24
, no. 
3
(
1994
):
563
572
, https://doi.org/10.1016/0008-8846(94)90145-7
20.
De Weerdt
K.
,
Kjellsen
K. O.
,
Sellevold
E.
, and
Justnes
H.
, “
Synergy between Fly Ash and Limestone Powder in Ternary Cements
,”
Cement and Concrete Composites
33
, no. 
1
(January
2011
):
30
38
, https://doi.org/10.1016/j.cemconcomp.2010.09.006
21.
Thomas
M. D.
, and
Hooton
R. D.
,
The Durability of Concrete Produced with Portland-Limestone Cement: Canadian Studies, PCA R&D SN3142
, (Skokie, IL:
Portland Cement Association
,
2010
).
22.
Antoni
M.
,
Rossen
J.
,
Martirena
F.
, and
Scrivener
K.
, “
Cement Substitution by a Combination of Metakaolin and Limestone
,”
Cement and Concrete Research
42
, no. 
12
(December
2012
):
1579
1589
, https://doi.org/10.1016/j.cemconres.2012.09.006
23.
Elgalhud
A.
,
Dhir
R. K.
, and
Ghataora
G.
, “
Chloride Ingress in Concrete: Limestone Addition Effects
,”
Magazine of Concrete Research
70
, no. 
6
(March
2018
):
292
313
, https://doi.org/10.1680/jmacr.17.00177
24.
Stubstad
R.
,
Glauz
D.
, and
Rufino
D.
,
Use of Raw Limestone in Portland Cement
(
Sacramento, CA
:
State of California, Department of Transportation
,
2008
).
25.
Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration
, ASTM C1202-19 (
West Conshohocken, PA
:
ASTM International
, approved February 1,
2019
), https://doi.org/10.1520/C1202-19
26.
Barrett
T. J.
,
Sun
H.
,
Nantung
T.
, and
Weiss
W. J.
, “
Performance of Portland Limestone Cements
,”
Transportation Research Record: Journal of the Transportation Research Board
2441
, no. 
1
(January
2014
):
112
120
, https://doi.org/10.3141%2F2441-15
27.
Barrett
T. J.
,
Miller
A. E.
, and
Weiss
W. J.
, “
Reducing Shrinkage Cracking with Internal Curing: From Theory to Practice
,”
The Indian Concrete Journal
88
, no. 
10
(
2014
):
61
71
.
28.
Ramezanianpour
A. M.
and
Hooton
R. D.
, “
A Study on Hydration, Compressive Strength, and Porosity of Portland-Limestone Cement Mixes Containing SCMs
,”
Cement and Concrete Composites
51
(August
2014
):
1
13
, https://doi.org/10.1016/j.cemconcomp.2014.03.006
29.
Ramezanianpour
A. A.
,
Ghiasvand
E.
,
Nickseresht
I.
,
Mahdikhani
M.
, and
Moodi
F.
, “
Influence of Various Amounts of Limestone Powder on Performance of Portland Limestone Cement Concretes
,”
Cement and Concrete Composites
31
, no. 
10
(November
2009
):
715
720
.
30.
Tsivilis
S.
,
Batis
G.
,
Chaniotakis
E.
,
Grigoriadis
G.
, and
Theodossis
D.
, “
Properties and Behavior of Limestone Cement Concrete And Mortar
,”
Cement and Concrete Research
30
, no. 
10
(October
2000
):
1679
1683
, https://doi.org/10.1016/S0008-8846(00)00372-0
31.
Tsivilis
S.
,
Chaniotakis
E.
,
Kakali
G.
, and
Batis
G.
, “
An Analysis of the Properties of Portland Limestone Cements and Concrete
,”
Cement and Concrete Composites
24
, nos. 
3–4
(June–August
2002
):
371
378
, https://doi.org/10.1016/S0958-9465(01)00089-0
32.
Voglis
N.
,
Kakali
G.
,
Chaniotakis
E.
, and
Tsivilis
S.
, “
Portland-Limestone Cements. Their Properties and Hydration Compared to Those of Other Composite Cements
,”
Cement and Concrete Composites
27
, no. 
2
(February
2005
):
191
196
, https://doi.org/10.1016/j.cemconcomp.2004.02.006
33.
Barrett
T. J.
,
Sun
H.
, and
Weiss
W. J.
,
Performance of Portland Limestone Cements: Cements Designed to Be More Sustainable That Include Up to 15% Limestone Addition, FHWA/IN/JTRP-2013/29
(West Lafayette, IN:
Joint Transportation Research Program, Indiana Department of Transportation and Purdue University
,
2013
).
34.
Hooton
R.
,
Nokken
M.
, and
Thomas
M. D. A.
,
Portland-Limestone Cement: State-of-the-Art Report and Gap Analysis for CSA A 3000, SN3053
(Ottawa, Canada:
Cement Association of Canada
,
2007
).
35.
Laker
T.
and
Smartz
B.
, “
Evaluation of Portland Limestone Performance Cements in Colorado and Utah Transportation Projects: 2007 to Present
” (paper presentation,
Transportation Research Board 91st Annual Meeting
,
Washington, DC
, January 22–26,
2012
).
36.
Bentz
D. P.
,
Ardani
A.
,
Barrett
T.
,
Jones
S. Z.
,
Lootens
D.
,
Peltz
M. A.
,
Sato
T.
,
Stutzman
P. E.
,
Tanesi
J.
, and
Weiss
W. J.
, “
Multi-scale Investigation of the Performance of Limestone in Concrete
,”
Construction and Building Materials
75
(January
2015
):
1
10
, https://doi.org/10.1016/j.conbuildmat.2014.10.042
37.
Azad
V. J.
,
Suraneni
P.
,
Isgor
O.
, and
Weiss
W.
, “
Interpreting the Pore Structure of Hydrating Cement Phases through a Synergistic Use of the Powers-Brownyard Model, Hydration Kinetics, and Thermodynamic Calculations
,”
Advances in Civil Engineering Materials
6
, no. 
1
(January
2017
):
1
16
, https://doi.org/10.1520/ACEM20160038
38.
Bharadwaj
K.
,
Ghantous
R. M.
,
Sahan
F. N.
,
Isgor
B. O.
, and
Weiss
W. J.
, “
Predicting Pore Volume, Compressive Strength, Pore Connectivity, and Formation Factor in Cementitious Pastes Containing Fly Ash
,”
Cement and Concrete Composites
122
(September
2021
): 104113, https://doi.org/10.1016/j.cemconcomp.2021.104113
39.
Bharadwaj
K.
,
Glosser
D.
,
Moradllo
M. K.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Toward the Prediction of Pore Volumes and Freeze-Thaw Performance of Concrete Using Thermodynamic Modelling
,”
Cement and Concrete Research
124
(October
2019
): 105820, https://doi.org/10.1016/j.cemconres.2019.105820
40.
Bharadwaj
K.
,
Isgor
B. O.
,
Weiss
J. W.
,
Chopperla
K. S. T.
,
Choudhary
A.
,
Vasudevan
G.
,
Glosser
D.
,
Ideker
J.
, and
Trejo
J.
, “
A New Mixture Proportioning Method for Performance-Based Concrete
,”
ACI Materials Journal
119
, no 
2
(
2022
): https://doi.org/10.14359/51734301
41.
Glosser
D.
,
Azad
V. J.
,
Suraneni
P.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Extension of the Powers-Brownyard Model to Pastes Containing Supplementary Cementitious Materials
,”
ACI Materials Journal
116
, no. 
5
(September
2019
):
205
216
, https://doi.org/10.14359/51714466
42.
Lothenbach
B.
,
Kulik
D. A.
,
Matschei
T.
,
Balonis
M.
,
Baquerizo
L.
,
Dilnesa
B.
,
Miron
G. D.
, and
Myers,
R. J.
Cemdata 18: A Chemical Thermodynamic Database for Hydrated Portland Cements and Alkali-Activated Materials
,”
Cement and Concrete Research
115
(January
2019
):
472
506
, https://doi.org/10.1016/j.cemconres.2018.04.018
43.
Lothenbach
B.
,
Matschei
T.
,
Möschner
G.
, and
Glasser
F. P.
, “
Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement
,”
Cement and Concrete Research
38
, no. 
1
(January
2008
):
1
18
, https://doi.org/10.1016/j.cemconres.2007.08.017
44.
Lothenbach
B.
and
Winnefeld
F.
, “
Thermodynamic Modelling of the Hydration of Portland Cement
,”
Cement and Concrete Research
36
, no. 
2
(February
2006
):
209
226
, https://doi.org/10.1016/j.cemconres.2005.03.001
45.
Matschei
T.
,
Lothenbach
B.
, and
Glasser
F. P.
, “
Thermodynamic Properties of Portland Cement Hydrates in the System CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O
,”
Cement and Concrete Research
37
, no. 
10
(October
2007
):
1379
1410
, https://doi.org/10.1016/j.cemconres.2007.06.002
46.
Standard Method of Test for Determining the Total Pore Volume in Hardened Concrete Using Vacuum Saturation
, AASHTO TP 135-20 (Washington, DC:
American Association of State Highway and Transportation Officials
,
2010
).
47.
Standard Method of Test for Electrical Resistivity of a Concrete Cylinder Tested in a Uniaxial Resistance Test
, AASHTO - TP 119 (Washington, DC:
American Association of State Highway and Transportation Officials
, 2021)
48.
Concrete Construction Digital Magazine, “
The Advantages of Portland-Limestone Cement
,” Concrete Construction,
2014
, https://doi.org/http://web.archive.org/web/20220121231156/http://www.flyash.info/2019/012-paper.pdf
49.
Dhir
R.
,
Limbachiya
M. C.
,
McCarthy
M. J.
, and
Chaipanich
A.
, “
Evaluation of Portland Limestone Cements for Use in Concrete Construction
,”
Materials and Structures
40
, no. 
5
(January
2007
):
459
473
.
50.
Standard Test Methods for Chemical Analysis of Hydraulic Cement
, ASTM C114-18 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2018
), https://doi.org/10.1520/C0114-18
51.
Alarcon-Ruiz
L.
,
Platret
G.
,
Massieu
E.
, and
Ehrlacher
A.
, “
The Use of Thermal Analysis in Assessing the Effect of Temperature on a Cement Paste
,”
Cement and Concrete Research
35
, no. 
3
(March
2005
):
609
613
, https://doi.org/10.1016/j.cemconres.2004.06.015
52.
Pane
I.
and
Hansen
W.
, “
Investigation of Blended Cement Hydration by Isothermal Calorimetry and Thermal Analysis
,”
Cement and Concrete Research
35
, no. 
6
(June
2005
):
1155
1164
, https://doi.org/10.1016/j.cemconres.2004.10.027
53.
Villain
G.
,
Thiery
M.
, and
Platret
G.
, “
Measurement Methods of Carbonation Profiles in Concrete: Thermogravimetry, Chemical Analysis and Gammadensimetry
,”
Cement and Concrete Research
37
, no. 
8
(August
2007
):
1182
1192
, https://doi.org/10.1016/j.cemconres.2007.04.015
54.
Choudhary
A.
,
Glosser
D.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Experimental Test Method to Determine the Reactivity of Fly Ash for Use in Concrete Mixture Proportioning
” (
paper presentation, World of Coal Ash
2019
, St. Louis, MO, May 13–16,
2019
).
55.
Glosser
D.
,
Choudhary
A.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Investigation of Reactivity of Fly Ash and Its Effect on Mixture Properties
,”
ACI Materials Journal
116
, no. 
4
(July
2019
):
193
200
.
56.
State of California Department of Transportation
Standard Specifications
(
Sacramento, CA
:
State of California Department of Transportation
,
2018
).
57.
Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency
, ASTM C305-20 (
West Conshohocken, PA
:
ASTM International
, approved July 15,
2020
), https://doi.org/10.1520/C0305-20
58.
Standard Specification for Standard Sand
, ASTM C778-17 (
West Conshohocken, PA
:
ASTM International
, approved August 1,
2017
), https://doi.org/10.1520/C0778-17
59.
Standard Specification for Concrete Aggregates
, ASTM C33/C33M-18 (
West Conshohocken, PA
:
ASTM International
, approved March 15,
2018
), https://doi.org/10.1520/C0033_C0033M-18
60.
Standard Test Method for Bulk Electrical Resistivity or Bulk Conductivity of Concrete
, ASTM C1876-19 (West Conshohocken, PA:
ASTM International
, approved June 15,
2019
).
61.
Azad
V. J.
,
Suraneni
P.
,
Trejo
D.
,
Weiss
W. J.
, and
Isgor
O. B.
, “
Thermodynamic Investigation of Allowable Admixed Chloride Limits in Concrete
,”
ACI Materials Journal
115
, no. 
5
(September
2018
):
727
738
.
62.
Glosser
D.
,
Choudhary
A.
,
Ideker
J.
,
Trejo
D.
,
Weiss
W. J.
, and
Isgor
O. B.
, “
Thermodynamic Investigation of Cementitious Mixtures Incorporating Off-Spec Fly Ashes
” (paper presentation, Conference proceedings of World of Coal Ash, St. Louis, MO,
2019
).
63.
Glosser
D.
,
Suraneni
P.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Estimating Reaction Kinetics of Cementitious Pastes Containing Fly Ash
,”
Cement and Concrete Composites
112
(September
2020
): 103655, https://doi.org/10.1016/j.cemconcomp.2020.103655
64.
Mehta
P. K.
and
Monteiro
P. J.
,
Concrete Microstructure, Properties and Materials
(
New York
:
McGraw-Hill
,
2006
).
65.
Powers
T. C.
, “
Structure and Physical Properties of Hardened Portland Cement Paste
,”
Journal of the American Ceramic Society
41
, no. 
1
(January
1958
):
1
6
.
66.
Powers
T. C.
and
Brownyard
T. L.
, “
Studies of the Physical Properties of Hardened Portland Cement Paste
,”
Journal Proceedings
18
, no. 
3
(November
1946
):
249
336
.
67.
Moradllo
M. K.
,
Qiao
C.
,
Isgor
B.
,
Reese
S.
, and
Weiss
W. J.
, “
Relating Formation Factor of Concrete to Water Absorption
,”
ACI Materials Journal
115
, no. 
6
(November
2018
):
887
898
, https://doi.org/10.14359/51706844
68.
Sant
G.
,
Rajabipour
F.
, and
Weiss
J.
, “
The Influence of Temperature on Electrical Conductivity Measurements and Maturity Predictions in Cementitious Materials during Hydration
,”
Indian Concrete Journal
82
, no. 
4
(April
2008
):
7
16
.
69.
McCarter
W. J.
, “
Effects of Temperature on Conduction and Polarization in Portland Cement Mortar
,”
Journal of the American Ceramic Society
78
, no. 
2
(February
1995
):
411
415
, https://doi.org/10.1111/j.1151-2916.1995.tb08816.x
70.
Coyle
A. T.
,
Spragg
R. P.
,
Suraneni
P.
,
Amirkhanian
A. N.
, and
Weiss
W. J.
, “
Comparison of Linear Temperature Corrections and Activation Energy Temperature Corrections for Electrical Resistivity Measurements of Concrete
,”
Advances in Civil Engineering Materials
7
, no. 
1
(April
2018
):
174
187
, https://doi.org/10.1520/ACEM20170135
71.
Jafari Azad
V.
,
Erbektas
A. R.
,
Qiao
C.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Relating the Formation Factor and Chloride Binding Parameters to the Apparent Chloride Diffusion Coefficient of Concrete
,”
Journal of Materials in Civil Engineering
31
, no. 
2
(February
2019
): 04018392, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002615
72.
Qiao
C.
,
Coyle
A.
,
Isgor
O. B.
, and
Weiss
W. J.
, “
Prediction of Chloride Ingress in Saturated Concrete Using Formation Factor and Chloride Binding Isotherm
,”
Advances in Civil Engineering Materials
7
, no. 
1
(April
2018
): 20170141, https://doi.org/10.1520/ACEM20170141
73.
Chang
M. T.
,
Suraneni
P.
,
Isgor
O. B.
,
Trejo
D.
, and
Weiss
W. J.
, “
Using X-Ray Fluorescence to Assess the Chemical Composition and Resistivity of Simulated Cementitious Pore Solutions
,”
International Journal of Advances in Engineering Sciences and Applied Mathematics
9
, no. 
3
(March
2017
):
136
143
, https://doi.org/10.1007/s12572-017-0181-x
74.
Spragg
R.
,
Villani
C.
, and
Weiss
J.
, “
Electrical Properties of Cementitious Systems: Formation Factor Determination and the Influence of Conditioning Procedures
,”
Advances in Civil Engineering Materials
5
, no. 
1
(March
2016
): 20150035, https://doi.org/10.1520/ACEM20150035
75.
Weiss
W. J.
,
Barrett
T. J.
,
Qiao
C.
, and
Todak
H.
, “
Toward a Specification for Transport Properties of Concrete Based on the Formation Factor of a Sealed Specimen
,”
Advances in Civil Engineering Materials
5
, no. 
1
(July
2016
):
179
194
, https://doi.org/10.1520/ACEM20160004
76.
Snyder
K. A.
, “
The Relationship between the Formation Factor and the Diffusion Coefficient of Porous Materials Saturated with Concentrated Electrolytes: Theoretical and Experimental Considerations
,”
Concrete Science and Engineering
3
, no. 
12
(
2001
):
216
224
.
77.
Archie
G. E.
, “
The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics
,”
Transactions of the AIME
146
, no. 
1
(
1942
):
54
62
.
78.
Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures
, AASHTO PP 84-18 (Washington, DC:
American Association of State and Highway Transportation Officials
,
2018
).
79.
Bentz
D. P.
, “
A Virtual Rapid Chloride Permeability Test
,”
Cement and Concrete Composites
29
, no. 
10
(November
2007
):
723
731
, https://doi.org/10.1016/j.cemconcomp.2007.06.006
80.
Snyder
K. A.
,
Feng
X.
,
Keen
B. D.
, and
Mason
T. O.
, “
Estimating the Electrical Conductivity of Cement Paste Pore Solutions from OH−, K+ and Na+ Concentrations
,”
Cement and Concrete Research
33
, no. 
6
(June
2003
):
793
798
, https://doi.org/10.1016/S0008-8846(02)01068-2
81.
Mehdipour
I.
and
Khayat
K. H.
, “
Elucidating How Particle Packing Controls Rheology and Strength Development of Dense Cementitious Suspensions
,”
Cement and Concrete Composites
104
(November
2019
): 103413, https://doi.org/10.1016/j.cemconcomp.2019.103413
82.
Lange
F.
,
Mörtel
H.
, and
Rudert
V.
, “
Dense Packing of Cement Pastes and Resulting Consequences on Mortar Properties
,”
Cement and Concrete Research
27
, no. 
10
(October
1997
):
1481
1488
, https://doi.org/10.1016/S0008-8846(97)00189-0
83.
Garboczi
E. J.
, “
Permeability, Diffusivity, and Microstructural Parameters: A Critical Review
,”
Cement and Concrete Research
20
, no. 
4
(July
1990
):
591
601
, https://doi.org/10.1016/0008-8846(90)90101-3
This content is only available via PDF.
You do not currently have access to this content.