Abstract

With inspiration from the healing of wound or fractures in living species, producing self-healable material has been investigated in the past decades. As the main component of the asphalt mixture used for road pavement, bitumen is prone to cracking under load cycles and environmental conditions. However, bitumen has the ability to heal its cracks over time inherently. Intensifying the inherent self-healing property of bitumen can significantly reduce road pavement disasters, increase users’ safety, and save a tremendous amount of money needed for the rehabilitation of pavement. To improve the self-healing of bitumen, neat bitumen was modified by polyurethanes with healable polymer networks. Also, to improve the compatibility of polyurethane with bitumen and enhance its self-healability, castor oil was used as a biomodifier in the synthesis of polyurethane. Different dosages of synthesized polyurethane produced from toluene diisocyanate and castor oil (TDI-CO) were introduced to bitumen; then the self-healing of modified blends was compared with neat bitumen using fracture-based tests at different temperatures and ages. Fourier transform infrared spectroscopy showed proper in situ polymerization of biobased polyurethane in bitumen. It also showed a reduction in the aging of bitumen by lowering carbonyl and sulfoxide (known products of aging in bitumen) by 72 % and 50 % after long-term aging. Inherent healing and ductility tests indicated the efficiency of polyurethane modification by taking advantage of regeneration of hydrogen bonds in biomodified polyurethane, reaching 100 % healing after 30 min. It confirmed that an increase in temperature improved self-healing nonlinearly, and aging deteriorated it. Owing to the supramolecular structure of polyurethane, TDI-CO showed considerable improvement in bitumen healing even at low temperatures.

References

1.
Su
J.-F.
,
Qiu
J.
, and
Schlangen
E.
, “
Stability Investigation of Self-Healing Microcapsules Containing Rejuvenator for Bitumen
,”
Polymer Degradation and Stability
98
, no. 
6
(June
2013
):
1205
1215
. https://doi.org/10.1016/j.polymdegradstab.2013.03.008
2.
Read
J.
and
Whiteoak
D.
,
The Shell Bitumen Handbook
, 5th ed. (
London
:
Thomas Telford
,
2003
).
3.
Lu
X.
and
Isacsson
U.
, “
Effect of Ageing on Bitumen Chemistry and Rheology
,”
Construction and Building Materials
16
, no. 
1
(February
2002
):
15
22
. https://doi.org/10.1016/S0950-0618(01)00033-2
4.
Ponniah
J. E.
and
Kennepohl
G. J.
, “
Crack Sealing in Flexible Pavements: A Life-Cycle Cost Analysis
,”
Transportation Research Record
1529
, no. 
1
(January
1996
):
86
94
. https://doi.org/10.1177/0361198196152900111
5.
Qiu
J.
, “
Self Healing of Asphalt Mixtures: Towards a Better Understanding of the Mechanism
” (PhD diss.,
Delft University of Technology
,
2012
).
6.
Su
J.-F.
,
Wang
Y.-Y.
,
Han
N.-X.
,
Yang
P.
, and
Han
S.
, “
Experimental Investigation and Mechanism Analysis of Novel Multi-Self-Healing Behaviors of Bitumen Using Microcapsules Containing Rejuvenator
,”
Construction and Building Materials
106
(March
2016
):
317
329
. https://doi.org/10.1016/j.conbuildmat.2015.12.120
7.
McNally
T.
, ed.
Polymer Modified Bitumen: Properties and Characterisation
(
Cambridge, UK
:
Woodhead Publishing
,
2011
).
8.
Ayar
P.
,
Moreno-Navarro
F.
,
Rubio-Gámez
M. C.
, “
The Healing Capability of Asphalt Pavements: A State of the Art Review
,”
Journal of Cleaner Production
113
(February
2016
):
28
40
. https://doi.org/10.1016/j.jclepro.2015.12.034
9.
Lv
Q.
,
Huang
W.
,
Zheng
M.
,
Hao
G.
,
Yan
C.
, and
Sun
L.
, “
Investigating the Asphalt Binder/Mastic Bonding Healing Behavior Using Bitumen Bonding Strength Test and X-ray Computed Tomography Scan
,”
Construction and Building Materials
257
(October
2020
): 119504. https://doi.org/10.1016/j.conbuildmat.2020.119504
10.
Kazemi
M.
and
Fini
E. H.
, “
State of the Art in the Application of Functionalized Waste Polymers in the Built Environment
,”
Resources, Conservation and Recycling
177
(February
2022
): 105967. https://doi.org/10.1016/j.resconrec.2021.105967
11.
Kuan
H.-C.
,
Ma
C.-C. M.
,
Chang
W.-P.
,
Yuen
S.-M.
,
Wu
H.-H.
, and
Lee
T.-M.
, “
Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposite
,”
Composites Science and Technology
65
, nos. 
11–12
(September
2005
):
1703
1710
. https://doi.org/10.1016/j.compscitech.2005.02.017
12.
Mai
Y.-W.
and
Yu
Z.-Z.
,
Polymer Nanocomposites
(
Cambridge, UK
:
Woodhead Publishing
,
2006
).
13.
Santerre
J. P.
,
Woodhouse
K.
,
Laroche
G.
, and
Labow
R.
, “
Understanding the Biodegradation of Polyurethanes: From Classical Implants to Tissue Engineering Materials
,”
Biomaterials
26
, no. 
35
(December
2005
):
7457
7470
. https://doi.org/10.1016/j.biomaterials.2005.05.079
14.
Kazemi
M.
,
Kabir
S. F.
, and
Fini
E. H.
, “
State of the Art in Recycling Waste Thermoplastics and Thermosets and Their Applications in Construction
,”
Resources, Conservation and Recycling
174
(November
2021
): 105776. https://doi.org/10.1016/j.resconrec.2021.105776
15.
Feula
A.
,
Tang
X.
,
Giannakopoulos
I.
,
Chippindale
A. M.
,
Hamley
I. W.
,
Greco
F.
,
Buckley
C. P.
,
Siviour
C. R.
, and
Hayes
W.
, “
An Adhesive Elastomeric Supramolecular Polyurethane Healable at Body Temperature
,”
Chemical Science
7
, no. 
7
(March
2016
):
4291
4300
. https://doi.org/10.1039/C5SC04864H
16.
Cordier
P.
,
Tournilhac
F.
,
Soulié-Ziakovic
C.
, and
Leibler
L.
, “
Self-Healing and Thermoreversible Rubber from Supramolecular Assembly
,”
Nature
451
, no. 
1781
(February
2008
):
977
980
. https://doi.org/10.1038/nature06669
17.
Chung
K.
,
Lee
S.
,
Cho
W.
,
Seo
J.
, and
Hong
Y.
, “
Rheological Analysis of Self-Healing Property of Microcapsule-Containing Asphalt
,”
Journal of Industrial and Engineering Chemistry
64
(August
2018
):
284
291
. https://doi.org/10.1016/j.jiec.2018.03.026
18.
Zhou
X.
,
Sun
B.
,
Wu
S.
,
Zhang
X.
,
Liu
Q.
, and
Xiao
Y.
, “
Evaluation on Self-Healing Mechanism and Hydrophobic Performance of Asphalt Modified by Siloxane and Polyurethane
,”
Journal of Wuhan University of Technology-Materials Science Edition
34
, no. 
3
(
2019
):
630
637
. https://doi.org/10.1007/s11595-019-2097-8
19.
Shirzad
S.
,
Hassan
M.
, and
Mohammad
L. N.
, “
Rheological and Mechanical Evaluation of Polyurethane Prepolymer-Modified Asphalt Mixture with Self-Healing Abilities
,”
Journal of Materials in Civil Engineering
32
, no. 
8
(August
2020
): 04020231. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003307
20.
Feng
Z.
,
Xu
S.
,
Sun
Y.
, and
Yu
J.
, “
Performance Evaluation of SBS Modified Asphalt with Different Anti-aging Additives
,”
Journal of Testing and Evaluation
40
, no. 
5
(August
2012
):
728
733
, https://doi.org/10.1520/JTE20120047
21.
Ruan
Y.
,
Davison
R. R.
, and
Glover
C. J.
, “
The Effect of Long-Term Oxidation on the Rheological Properties of Polymer Modified Asphalts
,”
Fuel
82
, no. 
14
(October
2003
):
1763
1773
. https://doi.org/10.1016/S0016-2361(03)00144-3
22.
Hosseinnezhad
S.
,
Hung
A. M.
,
Mousavi
M.
,
Sharma
B. K.
, and
Fini
E.
, “
Resistance Mechanisms of Biomodified Binders against Ultraviolet Exposure
,”
ACS Sustainable Chemistry & Engineering
8
, no. 
6
(February
2020
):
2390
2398
. https://doi.org/10.1021/acssuschemeng.9b05490
23.
Pahlavan
F.
,
Mousavi
M.
,
Hung
A. M.
, and
Fini
E. H.
, “
Characterization of Oxidized Asphaltenes and the Restorative Effect of a Bio-modifier
,”
Fuel
212
(January
2018
):
593
604
. https://doi.org/10.1016/j.fuel.2017.10.090
24.
Yeganeh
H.
and
Hojati-Talemi
P.
,
“Preparation and Properties of Novel Biodegradable Polyurethane Networks Based on Castor Oil and Poly(Ethylene Glycol)
.
Polymer Degradation and Stability
92
, no. 
3
(March
2007
):
480
489
. https://doi.org/10.1016/j.polymdegradstab.2006.10.011
25.
Corcuera
M. A.
,
Rueda
L.
,
d’Arlas
B. F.
,
Arbelaiz
A.
,
Marieta
C.
,
Mondragon
I.
, and
Eceiza
A.
, “
Microstructure and Properties of Polyurethanes Derived from Castor Oil
,”
Polymer Degradation and Stability
95
, no. 
11
(November
2010
):
2175
2184
. https://doi.org/10.1016/j.polymdegradstab.2010.03.001
26.
Patel
V. R.
,
Dumancas
G. G.
,
Viswanath
L. C. K.
,
Maples
R.
, and
Subong
B. J. J.
, “
Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production
,”
Lipid Insights
9
(January
2016
):
1
12
. https://doi.org/10.4137/LPI.S40233
27.
Zeng
M.
,
Pan
H.
,
Zhao
Y.
, and
Tian
W.
, “
Evaluation of Asphalt Binder Containing Castor Oil-Based Bioasphalt Using Conventional Tests
,”
Construction and Building Materials
126
(November
2016
):
537
543
. https://doi.org/10.1016/j.conbuildmat.2016.09.072
28.
Zeng
M.
,
Li
J.
,
Zhu
W.
, and
Xia
Y.
, “
Laboratory Evaluation on Residue in Castor Oil Production as Rejuvenator for Aged Paving Asphalt Binder
,”
Construction and Building Materials
193
(December
2018
):
276
285
. https://doi.org/10.1016/j.conbuildmat.2018.10.204
29.
Cuadri
A.
,
García-Morales
M.
,
Navarro
F.
, and
Partal
P.
, “
Isocyanate-Functionalized Castor Oil as a Novel Bitumen Modifier
,”
Chemical Engineering Science
97
(June
2013
):
320
327
. https://doi.org/10.1016/j.ces.2013.04.045
30.
Cuadri
A.
,
García-Morales
M.
,
Navarro
F.
, and
Partal
P.
, “
Processing of Bitumens Modified by a Bio-oil-Derived Polyurethane
,”
Fuel
118
(February
2014
):
83
90
. https://doi.org/10.1016/j.fuel.2013.10.068
31.
Kazemi
M.
,
Mohammadi
A.
,
Goli
A.
, and
Fini
E.
, “
Introducing a Sustainable Bio-based Polyurethane to Enhance the Healing Capacity of Bitumen
,”
Journal of Materials in Civil Engineering
34
, no. 
3
(March
2022
): 04021465. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004102
32.
Kazemi
M.
,
Goli
A.
, and
Nasimifar
M.
, “
Evaluation of the Self-Healing Performance of Polyurethane-Modified Bitumen Using Bitumen Bond Strength (BBS) Test and CT Scan
,”
International Journal of Pavement Research and Technology
14
, no. 
2
(March
2021
):
168
173
. https://doi.org/10.1007/s42947-020-0064-6
33.
Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test)
, ASTM D2872-21 (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2021
), https://doi.org/10.1520/D2872-21
34.
Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV)
, ASTM D6521-19a (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2019
), https://doi.org/10.1520/D6521-19A
35.
Hosseinnezhad
S.
,
Zadshir
M.
,
Yu
X.
,
Yin
H.
,
Sharma
B. K.
, and
Fini
E.
, “
Differential Effects of Ultraviolet Radiation and Oxidative Aging on Bio-modified Binders
,”
Fuel
251
(September
2019
):
45
56
. https://doi.org/10.1016/j.fuel.2019.04.029
36.
Qiu
J.
,
Van de Ven
M. F. C.
,
Wu
S.
,
Yu
J.
, and
Molenaar
A.
, “
Investigating the Self Healing Capability of Bituminous Binders
,”
Road Materials and Pavement Design
10
, sup1 (September
2009
):
81
94
.
37.
Hu
Y.
,
Liu
C.
,
Shang
Q.
, and
Zhou
Y.
, “
Synthesis and Characterization of Novel Renewable Castor Oil-Based UV-Curable Polyfunctional Polyurethane Acrylate
,”
Journal of Coatings Technology and Research
15
, no. 
1
(January
2018
):
77
85
. https://doi.org/10.1007/s11998-017-9948-z
38.
Dony
A.
,
Ziyani
L.
,
Drouadaine
I.
,
Pouget
S.
,
Faucon-Dumont
S.
,
Simard
D.
,
Mouillet
V.
, et al., eds., “
MURE National Project: FTIR Spectroscopy Study to Assess Ageing of Asphalt Mixtures
” (paper presentation,
Proceedings of the Euroasohalt & Eurobitume Congress
,
Prague, Czech Republic
, June 1–3,
2016
).
39.
Marsac
P.
,
Piérard
N.
,
Porot
L.
,
Van den Bergh
W.
,
Grenfell
J.
,
Mouillet
V.
,
Pouget
S.
, et al., “
Potential and Limits of FTIR Methods for Reclaimed Asphalt Characterisation
,”
Materials and Structures
47
, no. 
8
(August
2014
):
1273
1286
. https://doi.org/10.1617/s11527-014-0248-0
40.
Chen
M.
,
Leng
B.
,
Wu
S.
, and
Sang
Y.
, “
Physical, Chemical and Rheological Properties of Waste Edible Vegetable Oil Rejuvenated Asphalt Binders
,”
Construction and Building Materials
66
(September
2014
):
286
298
. https://doi.org/10.1016/j.conbuildmat.2014.05.033
This content is only available via PDF.
You do not currently have access to this content.