Abstract

Pervious concrete creates a very porous medium that allows water to penetrate the pavement to underlying soils. It is a promising candidate in permeable pavement systems in urban areas, which could be an efficient solution to sustainable drainage systems. Concrete mixture design usually requires labor-intensive and time-consuming work, which involves a significant amount of “trial batching” approaches. Recently, machine learning methods have demonstrated that a robust model might help reduce the experimental work. Thus, we develop the Gaussian process regression (GPR) model to shed light on the relationship between predictors (nominal coarse aggregate sizes, cement content, water-to-cement ratios, and coarse aggregates content) and each of the different properties (density, compressive strength, tensile strength, and porosity) of pervious concrete. The modeling approach has a high degree of accuracy and stability, contributing to fast, low-cost estimations of multiple properties of pervious concrete.

References

1.
Report on Pervious Concrete
, ACI 522R-10 (
Farmington Hills, MI
:
American Concrete Institute
,
2010
).
2.
Imran
H. M.
,
Akib
S.
, and
Karim
M. R.
, “
Permeable Pavement and Stormwater Management Systems: A Review
,”
Environmental Technology
34
, no. 
18
(April
2013
):
2649
2656
, https://doi.org/10.1080/09593330.2013.782573
3.
Crouch
L. K.
,
Pitt
J.
, and
Hewitt
R.
, “
Aggregate Effects on Pervious Portland Cement Concrete Static Modulus of Elasticity
,”
Journal of Materials in Civil Engineering
19
, no. 
7
(July
2007
):
561
568
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(561)
4.
Kia
A.
,
Wong
H. S.
, and
Cheeseman
C. R.
, “
Clogging in Permeable Concrete: A Review
,”
Journal of Environmental Management
193
(May
2017
):
221
233
, https://doi.org/10.1016/j.jenvman.2017.02.018
5.
Stenmark
C.
, “
An Alternative Road Construction for Stormwater Management in Cold Climates
,”
Water Science and Technology
32
, no. 
1
(
1995
):
79
84
, https://doi.org/10.2166/wst.1995.0019
6.
DeRousseau
M. A.
,
Kasprzyk
J. R.
, and
Srubar
W. V.
 III
, “
Computational Design Optimization of Concrete Mixtures: A Review
,”
Cement and Concrete Research
109
(July
2018
):
42
53
, https://doi.org/10.1016/j.cemconres.2018.04.007
7.
Kosmatka
S. H.
and
Wilson
M. L.
,
Design and Control of Concrete Mixtures
, 15th ed. (
Skokie, IL
:
Portland Cement Association
,
2011
).
8.
Mindess
S.
,
Young
F. J.
, and
Darwin
D.
,
Concrete
, 2nd ed. (
Upper Saddle River, NJ
:
Prentice Hall
,
2003
).
9.
Haselbach
L.
and
Gaither
A.
, “
Preliminary Field Testing: Urban Heat Island Impacts and Pervious Concrete
” (
paper presentation, Concrete Technology Forum, Focus on Sustainable Development, National Ready Mixed Concrete Association
,
Denver, CO
, May
20
22
,
2008
).
10.
Fu
T. C.
,
Yeih
W.
,
Chang
J. J.
, and
Huang
R.
, “
The Influence of Aggregate Size and Binder Material on the Properties of Pervious Concrete
,”
Advances in Materials Science and Engineering
2014
(October
2014
): 963971.
11.
Zhou
X.-X.
,
Xue
F.
,
Gou
X.
, and
Shen
T.-M.
, “
Statistical Study of the Void Structure of Bi2212 Multifilamentary Superconducting Wires and Its Effect on the Critical Current Density
,”
Engineering Computations
36
, no. 
8
(October
2019
):
2714
2725
, https://doi.org/10.1108/EC-10-2018-0476
12.
Torres
A.
,
Gaedicke
C.
,
Hu
J.
,
Bejugam
R.
, and
McMasters
S.
, “
Comparing Design Void Content with Actual Void Content of Laboratory Prepared Pervious Concrete
,”
Materials Sciences and Applications
9
, no. 
7
(June
2018
):
596
613
.
13.
Akand
L.
,
Yang
M.
, and
Gao
Z.
, “
Characterization of Pervious Concrete through Image Based Micromechanical Modeling
,”
Construction and Building Materials
114
(July
2016
):
547
555
, https://doi.org/10.1016/j.conbuildmat.2016.04.005
14.
National Ready Mixed Concrete Association, Pervious Concrete: Experimental Validation of Mixture Proportioning Methodology, Report Number 2PE001
(
Alexandria, VA
:
National Ready Mixed Concrete Association
,
2009
).
15.
Deo
O.
and
Neithalath
N.
, “
Compressive Response of Pervious Concretes Proportioned for Desired Porosities
,”
Construction and Building Materials
25
, no. 
11
(November
2011
):
4181
4189
, https://doi.org/10.1016/j.conbuildmat.2011.04.055
16.
Xie
L.
,
Jiang
Y.
,
Bao
N.
,
Han
K.
, and
Zhou
J.
, “
An Experiment Investigation on Electrification by Collision between Chemically Identical Glass Particles
,”
AIP Conference Proceedings
1542
, no. 
1
(June
2013
):
859
862
.
17.
Zhou
J.
and
Xie
L.
, “
Effect of Net Surface Charge on Particle Sizing and Material Recognition by Using Phase Doppler Anemometry
,”
Applied Optics
50
, no. 
3
(
2011
):
379
386
, https://doi.org/10.1364/AO.50.000379
18.
Miyakawa
M.
,
Kim
S. W.
,
Hirano
M.
,
Kohama
Y.
,
Kawaji
H.
,
Atake
T.
,
Ikegami
H.
,
Kono
K.
, and
Hosono
K.
, “
Superconductivity in an Inorganic Electride 12CaO·7Al2O3:e-
,”
Journal of the American Chemical Society
129
, no. 
23
(May
2007
):
7270
7271
, https://doi.org/10.1021/ja0724644
19.
Schwartz
J.
,
Koch
C. C.
,
Zhang
Y.
, and
Liu
X.
. Formation of bismuth strontium calcium copper oxide superconductors. U.S. Patent US9773962B2, filed October 8, 2013, and issued September 26,
2017
.
20.
Zhang
Y.
,
Johnson
S.
,
Naderi
G.
,
Chaubal
M.
,
Hunt
A.
, and
Schwartz
J.
, “
High Critical Current Density Bi2Sr2CaCu2Ox/Ag Wire Containing Oxide Precursor Synthesized from Nano-Oxides
,”
Superconductor Science and Technology
29
, no. 
9
(
2016
): 095012, https://doi.org/10.1088/0953-2048/29/9/095012
21.
Zhang
Y.
,
Koch
C. C.
, and
Schwartz
J.
, “
Formation of Bi2Sr2CaCu2Ox/Ag Multifilamentary Metallic Precursor Powder-in-Tube Wires
,”
Superconductor Science and Technology
29
, no. 
12
(October
2016
): 125005, https://doi.org/10.1088/0953-2048/29/12/125005
22.
Zhang
Y.
,
Koch
C. C.
, and
Schwartz
J.
, “
Synthesis of Bi2Sr2CaCu2Ox Superconductors via Direct Oxidation of Metallic Precursors
,”
Superconductor Science and Technology
27
, no. 
5
(May
2014
): 055016, https://doi.org/10.1088/0953-2048/27/5/055016
23.
Yang
Z.
,
Liu
Z.
,
Sheng
J.
,
Guo
W.
,
Zeng
Y.
,
Gao
P.
, and
Ye
J.
, “
Opto-Electric Investigation for Si/Organic Heterojunction Single-Nanowire Solar Cells
,”
Scientific Reports
7
, no. 
1
(November
2017
): 14575, https://doi.org/10.1038/s41598-017-15300-0
24.
Lin
L.
,
Gu
C.
,
Zhu
J.
,
Ye
Q.
,
Jiang
E.
,
Wang
W.
,
Liao
M.
, et al., “
Engineering of Hole-Selective Contact for High-Performance Perovskite Solar Cell Featuring Silver Back-Electrode
,”
Journal of Materials Science
54
, no. 
10
(May
2019
):
7789
7797
, https://doi.org/10.1007/s10853-018-03258-x
25.
Hosseini
T.
,
Flores-Vivian
I.
,
Sobolev
K.
, and
Kouklin
N.
, “
Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell
,”
Scientific Reports
3
(September
2013
): 2727, https://doi.org/10.1038/srep02727
26.
Wang
Y.
,
Li
M.
,
Hasanyan
D.
,
Gao
J.
,
Li
J.
, and
Viehland
D.
, “
Geometry-Induced Magnetoelectric Effect Enhancement and Noise Floor Reduction in Metglas/Piezofiber Sensors
,”
Applied Physics Letters
101
, no. 
9
(August
2012
): 092905, https://doi.org/10.1063/1.4737906
27.
Zhang
Y.
and
Xu
X.
, “
Predicting AsxSe1-x Glass Transition Onset Temperature
,”
International Journal of Thermophysics
41
, no. 
11
(September
2020
): 149, https://doi.org/10.1007/s10765-020-02734-4
28.
Zhang
Y.
and
Xu
X.
, “
Solubility Predictions through LSBoost for Supercritical Carbon Dioxide in Ionic Liquids
,”
New Journal of Chemistry
44
, no. 
47
(
2020
):
20544
20567
, https://doi.org/10.1039/D0NJ03868G
29.
Zhang
Y.
and
Xu
X.
, “
Yttrium Barium Copper Oxide Superconducting Transition Temperature Modeling through Gaussian Process Regression
,”
Computational Materials Science
179
(June
2020
): 109583, https://doi.org/10.1016/j.commatsci.2020.109583
30.
Zhang
Y.
and
Xu
X.
, “
Predicting Doped MgB2 Superconductor Critical Temperature from Lattice Parameters Using Gaussian Process Regression
,”
Physica C: Superconductivity and Its Applications
573
(June
2020
): 1353633, https://doi.org/10.1016/j.physc.2020.1353633
31.
Zhang
Y.
and
Xu
X.
, “
Curie Temperature Modeling of Magnetocaloric Lanthanum Manganites Using Gaussian Process Regression
,”
Journal of Magnetism and Magnetic Materials
512
(October
2020
): 166998, https://doi.org/10.1016/j.jmmm.2020.166998
32.
Zhang
Y.
and
Xu
X.
, “
Machine Learning the Magnetocaloric Effect in Manganites from Lattice Parameters
,”
Applied Physics A
126
(April
2020
): 341, https://doi.org/10.1007/s00339-020-03503-8
33.
Zhang
Y.
and
Xu
X.
, “
Machine Learning the Magnetocaloric Effect in Manganites from Compositions and Structural Parameters
,”
AIP Advances
10
, no. 
3
(March
2020
): 035220, https://doi.org/10.1063/1.5144241
34.
Zhang
Y.
and
Xu
X.
, “
Predicting the Thermal Conductivity Enhancement of Nanofluids Using Computational Intelligence
,”
Physics Letters A
384
, no. 
20
(July
2020
): 126500, https://doi.org/10.1016/j.physleta.2020.126500
35.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Modeling of Lattice Constants for Half-Heusler Alloys
,”
AIP Advances
10
, no. 
4
(April
2020
): 045121, https://doi.org/10.1063/5.0002448
36.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Optical Band Gaps of Doped-ZnO Films
,”
Optik
217
(September
2020
): 164808, https://doi.org/10.1016/j.ijleo.2020.164808
37.
Zhang
Y.
and
Xu
X.
, “
Relative Cooling Power Modeling of Lanthanum Manganites Using Gaussian Process Regression
,”
RSC Advances
10
, no. 
35
(
2020
):
20646
20653
, https://doi.org/10.1039/D0RA03031G
38.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Band Gaps of Doped-TiO2 Photocatalysts from Structural and Morphological Parameters
,”
ACS Omega
5
, no. 
25
(June
2020
):
15344
15352
, https://doi.org/10.1021/acsomega.0c01438
39.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Lattice Constants for Cubic Perovskite A22+BB′O6 Compounds
,”
CrystEngComm
22
, no. 
38
(September
2020
):
6385
6397
, https://doi.org/10.1039/D0CE00928H
40.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Lattice Constants for Cubic Perovskite ABX3 Compounds
,”
ChemistrySelect
5
, no. 
32
(August
2020
):
9999
10009
, https://doi.org/10.1002/slct.202002532
41.
Zhang
Y.
and
Xu
X.
, “
Lattice Misfit Predictions via the Gaussian Process Regression for Ni-Based Single Crystal Superalloys
,”
Metals and Materials International
. Published ahead of print, October 26,
2020
, https://doi.org/10.1007/s12540-020-00883-7
42.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Lattice Constants from Ionic Radii and Electronegativities for Cubic Perovskite A2XY6 Compounds
,”
Physics and Chemistry of Minerals
47
(August
2020
): 39, https://doi.org/10.1007/s00269-020-01108-4
43.
Zhang
Y.
and
Xu
X.
, “
Transformation Temperature Predictions through Computational Intelligence for NiTi-Based Shape Memory Alloys
,”
Shape Memory and Superelasticity
6
, no. 
4
(
2020
):
374
386
, https://doi.org/10.1007/s40830-020-00303-0
44.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Lattice Parameters of Monoclinic Double Perovskites
,”
International Journal of Quantum Chemistry
. Published ahead of print, October 3,
2020
, https://doi.org/10.1002/qua.26480
45.
Zhang
Y.
and
Xu
X.
, “
Fe-Based Superconducting Transition Temperature Modeling through Gaussian Process Regression
,”
Journal of Low Temperature Physics
.
202
, nos. 
1–2
(January
2021
):
205
218
, https://doi.org/10.1007/s10909-020-02545-9
46.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Decomposition Onset Temperature of Lubricant Additives
,”
Journal of Materials Engineering and Performance
29
, no. 
10
(October
2020
):
6605
6616
, https://doi.org/10.1007/s11665-020-05146-5
47.
Zhang
Y.
and
Xu
X.
, “
Predicting Doped Fe-Based Superconductor Critical Temperature from Structural and Topological Parameters Using Machine Learning
,”
International Journal of Materials Research
(
2020
): N11975.
48.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Glass Transition Temperature of Polymers
,”
Heliyon
6
, no. 
10
(October
2020
): e05055, https://doi.org/10.1016/j.heliyon.2020.e05055
49.
Zhang
Y.
and
Xu
X.
, “
Machine Learning F-Doped Bi(Pb)–Sr–Ca–Cu–O Superconducting Transition Temperature
,”
Journal of Superconductivity and Novel Magnetism
34
, no. 
1
(January
2021
):
63
73
, https://doi.org/10.1007/s10948-020-05682-0
50.
Zhang
Y.
and
Xu
X.
, “
Machine Learning the Central Magnetic Flux Density of Superconducting Solenoids
,”
Materials Technology
. Published ahead of print, October 13,
2020
, https://doi.org/10.1080/10667857.2020.1830567
51.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Lattice Constants for Spinel Compounds
,”
Chemical Physics Letters
760
(December
2020
): 137993, https://doi.org/10.1016/j.cplett.2020.137993
52.
Zhang
Y.
and
Xu
X.
, “
Machine Learning Glass Transition Temperature of Styrenic Random Copolymers
,”
Journal of Molecular Graphics and Modelling
103
(March
2021
): 107796, https://doi.org/10.1016/j.jmgm.2020.107796
53.
Bull
A. D.
, “
Convergence Rates of Efficient Global Optimization Algorithms
,”
Journal of Machine Learning Research
12
(October
2011
):
2879
2904
.
54.
Snoek
J.
,
Larochelle
H.
, and
Adams
R. P.
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,” in
25th International Conference on Neural Information Processing Systems
(Red Hook, NY: Curran Associates,
2012
),
2951
2959
.
55.
Ibrahim
A.
,
Mahmoud
E.
,
Yamin
M.
, and
Patibandla
V. C.
, “
Experimental Study on Portland Cement Pervious Concrete Mechanical and Hydrological Properties
,”
Construction and Building Materials
50
(January
2014
):
524
529
, https://doi.org/10.1016/j.conbuildmat.2013.09.022
This content is only available via PDF.
You do not currently have access to this content.