Abstract

Fiber reinforced polymer composites have attracted attention globally because of their improved properties. These composites makes the fabrication easy; they are easily available and biodegradable in nature. They can be used in various applications like door panels, toys, roofs, furniture, aerospace, and many more. In this work, hemp and glass fibers are utilized as the reinforcement material, and epoxy is used as the matrix material; and by varying the sequence of the fibers, three different types of laminates are prepared. Laminates are prepared by using the hand layup method followed by the vacuum bagging process. Mechanical properties like flexural, tensile, hardness, and impact properties are evaluated in this article. The dry sliding wear behavior of three different laminates is carried out with pin on disk by varying time, speed, and load. Morphological study of specimens was also done with the help of scanning electron microscopy. From the results, it was observed that the neat epoxy resin properties can be enhanced by the hybridization with hemp and glass fibers. Mechanical properties of these fiber reinforced composites are improved because of the addition of hemp fiber in the laminate sequence. It was also observed that the wear properties of samples are significantly influenced by the applied load, speed and time.

References

1.
Vigneshkumar
S.
and
Rajasekaran
T.
, “
Experimental Analysis on Tribological Behavior of Fiber Reinforced Composites
,”
IOP Conference Series: Materials Science and Engineering
402
, no. 
1
(August
2018
): 012198, https://doi.org/10.1088/1757-899X/402/1/012198
2.
Menezes
P. L.
,
Rohatgi
P. K.
, and
Lovell
M. R.
, “
Studies on the Tribological Behavior of Natural Fiber Reinforced Polymer Composite
,” in
Green Tribology
(
Berlin
:
Springer-Verlag Berlin Heidelberg
,
2012
),
329
345
.
3.
Viswanath
S. B.
,
Subbiah
M.
, and
Nagasundaram
N.
, “
Mechanical and Tribological Behavior of Hemp Fiber Reinforced Polymeric Composite
,”
International Journal of Mechanical Engineering and Technology
9
, no. 
11
(November
2018
):
1061
1066
.
4.
Chaudhar
V.
,
Kumar Bajpai
P.
, and
Maheshwar
S.
, “
An Investigation on Wear and Dynamic Mechanical Behavior of Jute/Hemp/Flax Reinforced Composites and Its Hybrids for Tribological Applications
,”
Fibers and Polymers
19
, no. 
2
(February
2018
):
403
415
, https://doi.org/10.1007/s12221-018-7759-6
5.
Wang
Q.
,
Zhang
X.
, and
Pei
X.
, “
Study on the Synergistic Effect of Carbon Fiber and Graphite and Nanoparticle on the Friction and Wear Behavior of Polyimide Composites
,”
Materials & Design
31
, no. 
8
(September
2010
):
3761
3768
, https://doi.org/10.1016/j.matdes.2010.03.017
6.
Srinivasan
V. S.
,
Boopathy
S. R.
,
Sangeetha
D.
, and
Ramnath
B. V.
, “
Evaluation of Mechanical and Thermal Properties of Banana–Flax Based Natural Fibre Composite
,”
Materials & Design
60
(August
2014
):
620
627
, https://doi.org/10.1016/j.matdes.2014.03.014
7.
Chang
B. P.
,
Akil
H. M.
, and
Zamri
M. H.
, “
Tribological Characteristics of Green Biocomposites
,” in
Green Biocomposites
(
Cham, Switzerland
:
Springer
,
2017
),
149
179
.
8.
Shibata
S.
,
Cao
Y.
, and
Fukumoto
I.
, “
Flexural Modulus of the Unidirectional and Random Composites Made from Biodegradable Resin and Bamboo and Kenaf Fibres
,”
Composites Part A: Applied Science and Manufacturing
39
, no. 
4
(April
2008
):
640
646
, https://doi.org/10.1016/j.compositesa.2007.10.021
9.
Oksman
K.
,
Skrifvars
M.
, and
Selin
J.-F.
, “
Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites
,”
Composites Science and Technology
63
, no. 
9
(July
2003
):
1317
1324
, https://doi.org/10.1016/S0266-3538(03)00103-9
10.
Arbelaiz
A.
,
Fernández
B.
,
Valea
A.
, and
Mondragon
I.
, “
Mechanical Properties of Short Flax Fibre Bundle/Poly(ε-caprolactone) Composites: Influence of Matrix Modification and Fibre Content
,”
Carbohydrate Polymers
64
, no. 
2
(May
2006
):
224
232
, https://doi.org/10.1016/j.carbpol.2005.11.030
11.
Bhardwaj
R.
,
Mohanty
A. K.
,
Drzal
L. T.
,
Pourboghrat
F.
, and
Misra
M.
, “
Renewable Resource-Based Green Composites from Recycled Cellulose Fiber and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bioplastic
,”
Biomacromolecules
7
, no. 
6
(June
2006
):
2044
2051
, https://doi.org/10.1021/bm050897y
12.
Jawaid
M.
and
Abdul Khalil
H. P. S.
, “
Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review
,”
Carbohydrate Polymers
86
, no. 
1
(August
2011
):
1
18
, https://doi.org/10.1016/j.carbpol.2011.04.043
13.
Ghani
M. A. A.
,
Salleh
Z.
,
Hyie
K. M.
,
Berhan
M. N.
,
Taib
Y. M. D.
, and
Bakri
M. A. I.
, “
Mechanical Properties of Kenaf/Fiberglass Polyester Hybrid Composite
,”
Procedia Engineering
41
(
2012
):
1654
1659
, https://doi.org/10.1016/j.proeng.2012.07.364
14.
Ahmed
K. S.
and
Vijayaragan
S.
, “
Elastic Property Evaluation of Jute-Glass Fibre Hybrid Composite Using Experimental and CLT Approach
,”
Indian Journal Engineering & Materials Sciences
13
, no. 
5
(
2006
):
435
442
.
15.
Verma
A.
,
Gaur
A.
, and
Singh
V. K.
, “
Mechanical Properties and Microstructure of Starch and Sisal Fiber Biocomposite Modified with Epoxy Resin
,”
Materials Performance and Characterization
6
, no. 
1
(December
2017
):
500
520
, https://doi.org/10.1520/MPC20170069
16.
Verma
A.
,
Negi
P.
, and
Singh
V. K.
, “
Experimental Analysis on Carbon Residuum Transformed Epoxy Resin: Chicken Feather Fiber Hybrid Composite
,”
Polymer Composites
40
, no. 
7
(July
2019
):
2690
2699
, https://doi.org/10.1002/pc.25067
17.
Verma
A.
and
Singh
V. K.
, “
Mechanical, Microstructural and Thermal Characterization of Epoxy-Based Human Hair–Reinforced Composites
,”
Journal of Testing and Evaluation
47
, no. 
2
(
2019
):
1193
1215
, https://doi.org/10.1520/JTE20170063
18.
Verma
A.
,
Negi
P.
, and
Singh
V. K.
, “
Physical and Thermal Characterization of Chicken Feather Fiber and Crumb Rubber Reformed Epoxy Resin Hybrid Composite
,”
Advances in Civil Engineering Materials
7
, no. 
1
(
2018
):
538
557
, https://doi.org/10.1520/ACEM20180027
19.
Verma
A.
,
Negi
P.
, and
Singh
V. K.
, “
Experimental Investigation of Chicken Feather Fiber and Crumb Rubber Reformed Epoxy Resin Hybrid Composite: Mechanical and Microstructural Characterization
,”
Journal of the Mechanical Behavior of Materials
27
, nos. 
3–4
(
2018
): 20180014.
20.
Verma
A.
and
Singh
V. K.
, “
Experimental Investigations on Thermal Properties of Coconut Shell Particles in DAP Solution for Use in Green Composite Applications
,”
Journal of Material Science & Engineering
5
, no. 
3
(
2016
): 1000242.
21.
Jain
N.
,
Verma
A.
, and
Singh
V. K.
, “
Dynamic Mechanical Analysis and Creep-Recovery Behaviour of Polyvinyl Alcohol Based Cross-Linked Biocomposite Reinforced with Basalt Fiber
,”
Materials Research Express
6
, no. 
10
(
2019
): 105373, https://doi.org/10.1088/2053-1591/ab4332
22.
Verma
A.
,
Budiyal
L.
,
Sanjay
M. R.
, and
Siengchin
S.
, “
Processing and Characterization Analysis of Pyrolyzed Oil Rubber (from Waste Tires)‐Epoxy Polymer Blend Composite for Lightweight Structures and Coatings Applications
,”
Polymer Engineering & Science
59
, no. 
10
(
2019
):
2041
2051
, https://doi.org/10.1002/pen.25204
23.
Verma
A.
,
Joshi
K.
,
Gaur
A.
, and
Singh
V. K.
, “
Starch-Jute Fiber Hybrid Biocomposite Modified with an Epoxy Resin Coating: Fabrication and Experimental Characterization
,”
Journal of the Mechanical Behavior of Materials
27
, nos. 
5–6
(
2018
): 20182006, https://doi.org/10.1515/jmbm-2018-2006
24.
Verma
A.
,
Singh
C.
,
Singh
V. K.
, and
Jain
N.
, “
Fabrication and Characterization of Chitosan-Coated Sisal Fiber–Phytagel Modified Soy Protein-Based Green Composite
,”
Journal of Composite Materials
53
, no. 
18
(
2019
):
2481
2504
, https://doi.org/10.1177/0021998319831748
25.
Verma
A.
,
Baurai
K.
,
Sanjay
M. R.
, and
Siengchin
S.
, “
Mechanical, Microstructural, and Thermal Characterization Insights of Pyrolyzed Carbon Black from Waste Tires Reinforced Epoxy Nanocomposites for Coating Application
,”
Polymer Composites
41
, no. 
1
(
2020
):
338
349
, https://doi.org/10.1002/pc.25373
26.
Rastogi
S.
,
Verma
A.
, and
Singh
V. K.
, “
Experimental Response of Nonwoven Waste Cellulose Fabric–Reinforced Epoxy Composites for High Toughness and Coating Applications
,”
Materials Performance and Characterization
9
, no. 
1
(
2020
):
151
172
, https://doi.org/10.1520/MPC20190251
27.
Singh
K.
,
Jain
N.
,
Verma
A.
,
Singh
V. K.
, and
Chauhan
S.
, “
Functionalized Graphite–Reinforced Cross-Linked Poly(vinyl Alcohol) Nanocomposites for Vibration Isolator Application: Morphology, Mechanical, and Thermal Assessment
,”
Materials Performance and Characterization
9
, no. 
1
(
2020
):
215
230
, https://doi.org/10.1520/MPC20190254
28.
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
(Superseded), ASTM D3039/D3039M-14 (
West Conshohocken, PA
:
ASTM International
, approved May 15,
2014
), https://doi.org/10.1520/D3039_D3039M-14
29.
Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
(Superseded), ASTM D790-15e2 (
West Conshohocken, PA
:
ASTM International
, approved Decemember 1,
2015
), https://doi.org/10.1520/D0790-15E02
30.
Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics
(Superseded), ASTM D256-10e1 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2010
), https://doi.org/10.1520/D0256-10E01
31.
Standard Guide for Testing Polymer Matrix Composite Materials
(Superseded), ASTM D4762-16 (
West Conshohocken, PA
:
ASTM International
, approved August 15,
2016
), https://doi.org/10.1520/D4762-16
32.
Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating Materials
(Superseded), ASTM D785-08 (
West Conshohocken, PA
:
ASTM International
, approved March 1,
2008
), https://doi.org/10.1520/D0785-08
33.
Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus
, ASTM G99-17 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2017
), https://doi.org/10.1520/G0099-17
34.
Bharath
K. N.
,
Madhu
P.
,
Gowda
T. Y.
,
Verma
A.
,
Sanjay
M. R.
, and
Siengchin
S.
, “
Mechanical and Chemical Properties Evaluation of Sheep Wool Fiber–Reinforced Vinylester and Polyester Composites
,”
Materials Performance and Characterization
10
, no. 
1
(
2021
):
99
109
, https://doi.org/10.1520/MPC20200036
35.
Bharath
K. N.
,
Madhu
P.
,
Gowda
T. G.
,
Verma
A.
,
Sanjay
M. R.
, and
Siengchin
S.
, “
A Novel Approach for Development of Printed Circuit Board from Biofiber Based Composites
,”
Polymer Composites
41
, no. 
11
(
2020
):
4550
4558
, https://doi.org/10.1002/pc.25732
36.
Marichelvam
M. K.
,
Manimaran
P.
,
Verma
A.
,
Sanjay
M. R.
,
Siengchin
S.
,
Kandakodeeswaran
K.
, and
Geetha
M.
, “
A Novel Palm Sheath and Sugarcane Bagasse Fiber Based Hybrid Composites for Automotive Applications: An Experimental Approach
,”
Polymer Composites
42
, no. 
1
(
2021
):
512
521
, https://doi.org/10.1002/pc.25843
37.
Verma
A.
,
Parashar
A.
,
Jain
N.
,
Singh
V. K.
,
Rangappa
S. M.
, and
Siengchin
S.
, “
Surface Modification Techniques for the Preparation of Different Novel Biofibers for Composites
,” in
Biofibers and Biopolymers for Biocomposites
(Cham, Switzerland: Springer,
2020
),
1
34
.
38.
Verma
A.
,
Parashar
A.
, and
Packirisamy
M.
, “
Atomistic Modeling of Graphene/Hexagonal Boron Nitride Polymer Nanocomposites: A Review
,”
Wiley Interdisciplinary Reviews: Computational Molecular Science
8
, no. 
3
(May–June
2018
): e1346.
39.
Verma
A.
,
Singh
V. K.
,
Verma
S. K.
, and
Sharma
A.
, “
Human Hair: A Biodegradable Composite Fiber–A Review
,”
International Journal of Waste Resources
6
, no. 
2
(
2016
): 1000206, https://doi.org/10.4172/2252-5211.1000206
40.
Chaurasia
A.
,
Verma
A.
,
Parashar
A.
, and
Mulik
R. S.
, “
Experimental and Computational Studies to Analyze the Effect of h-BN Nanosheets on Mechanical Behavior of h-BN/Polyethylene Nanocomposites
,”
The Journal of Physical Chemistry C
123
, no. 
32
(
2019
):
20059
20070
, https://doi.org/10.1021/acs.jpcc.9b05965
41.
Verma
A.
,
Jain
N.
,
Parashar
A.
,
Singh
V. K.
,
Sanjay
M. R.
, and
Siengchin
S.
, “
Design and Modeling of Lightweight Polymer Composite Structures
,” in
Lightweight Polymer Composite Structures
(
Boca Raton, FL
:
CRC Press
,
2020
),
193
224
.
42.
Verma
A.
,
Jain
N.
,
Parashar
A.
,
Singh
V. K.
,
Sanjay
M. R.
, and
Siengchin
S.
, “
Lightweight Graphene Composite Materials
,” in
Lightweight Polymer Composite Structures
(
Boca Raton, FL
:
CRC Press
,
2020
),
1
20
.
43.
Verma
A.
,
Jain
N.
,
Parashar
A.
,
Gaur
A.
,
Sanjay
M. R.
, and
Siengchin
S.
, “
Lifecycle Assessment of Thermoplastic and Thermosetting Bamboo Composites
,” in
Bamboo Fiber Composites
(
Singapore
:
Springer
,
2020
),
235
246
.
This content is only available via PDF.
You do not currently have access to this content.