Abstract

This paper analyzes the application of artificial neural networks (ANN) to predict the 1-day compressive strength of ultra-high-performance concrete (UHPC) made with any combination of powders and supplementary cementitious materials (SCM) such as silica fume (SF), fly ash (FA), ground granulated blast slag furnace (GGBSF), recycled glass powder (GP), rice husk ash (RHA), fluid catalytic cracking catalyst residue (FC3R), metakaolin (MK), limestone powder (LP), and quartz powder (QP). A total of 604 data from scientific literature were used to train the one hidden layer ANN model by using the k-fold validation procedure. Furthermore, 90 UHPC mixtures were experimentally performed to validate the proposed ANN model. The performance of the model was assessed using several statistical performance indexes: ratio of the root mean square error to the standard deviation of measured data (RSR), root mean square error (RSME), normalized mean bias error (NMBE), Nash–Sutcliff efficiency, and coefficient of multiple determination (R2). Connection weight approach (CWA) algorithm was utilized to analyze the relationships between the UHPC components and the 1-day compressive strength. The results indicated that the ANN is an efficient model for predicting the early strength (1-day compressive strength) of UHPC achieving R2 values of 0.88 and 0.86 on the test data and experimental data, respectively, even when the experimental dosages included combinations of components that were not found in the training data. The results of the CWA analysis indicated that SCM such as MK, FC3R, SF, and LP, as well as other factors such as virtual packing density, improved the early strength of UHPC, whereas FA, GP, and RHA were pointed out as harmful for the one-day compressive strength. As conclusion, the ANN model could be helpful in the developing of UHPC with early strength needs by preselecting the combinations of available SCM and powders that have better results in the model at lower cost.

References

1.
Soliman
N. A.
and
Tagnit-Hamou
A.
, “
Partial Substitution of Silica Fume with Fine Glass Powder in UHPC: Filling the Micro Gap
,”
Construction and Building Materials
139
(May
2017
):
374
383
, https://doi.org/10.1016/j.conbuildmat.2017.02.084
2.
Abellán
J.
,
Fernández
J.
,
Torres
N.
, and
Núñez
A.
, “
Statistical Optimization of Ultra-High-Performance Glass Concrete
,”
ACI Materials Journal
117
, no. 
1
(January
2020
):
243
254
, https://doi.org/10.14359/51720292
3.
Abellán
J.
,
Núñez
A.
,
Torres
N.
, and
Fernández
J.
, “
Development of Cost-Efficient UHPC with Local Materials in Colombia
,” in
Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2020
),
97
98
.
4.
Ghafari
E.
,
Costa
H.
, and
Júlio
E.
, “
RSM-Based Model to Predict the Performance of Self-Compacting UHPC Reinforced with Hybrid Steel Micro-fibers
,”
Construction and Building Materials
66
(June
2014
):
375
383
, https://doi.org/10.1016/j.conbuildmat.2014.05.064
5.
Schmidt
C.
and
Schmidt
M.
, “
‘Whitetopping’ of Asphalt and Concrete Pavements with Thin Layers of Ultra-High- Performance Concrete – Construction and Economic Efficiency
,” in
Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2012
),
921
928
.
6.
Abbas
S.
,
Nehdi
M. L.
, and
Saleem
M. A.
, “
Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges
,”
International Journal of Concrete Structures and Materials
10
, no. 
3
(June
2016
):
271
295
, https://doi.org/10.1007/s40069-016-0157-4
7.
ACI Committee 239
ACI– 239 Committee in Ultra-High Performance Concrete
(Farmington Hills, MI: American Concrete Institute,
2018
).
8.
Soliman
N. A.
and
Tagnit-Hamou
A.
, “
Using Particle Packing and Statistical Approach to Optimize Eco-Efficient Ultra- High-Performance Concrete
,”
ACI Materials Journal
114
, no. 
6
(November
2017
):
847
858
, https://doi.org/10.14359/51701001
9.
Jammes
F.-X.
,
Cespedes
X.
, and
Resplendino
J.
, “
Design of Offshore Wind Turbines
,” in
RILEM-Fib-AFGC International Symposium on Ultra-High Performance Fibre-Reinforced Concrete
(
Marseille, France
:
RILEM
2013
),
443
452
.
10.
Tagnit-Hamou
A.
,
Soliman
N.
, and
Omran
A.
, “
Green Ultra-High-Performance Glass Concrete
” (
paper presentation, First International Interactive Symposium on UHPC
,
Des Moines, IA
, July 18,
2016
).
11.
Richard
P.
and
Cheyrezy
M.
, “
Composition of Reactive Powder Concretes
,”
Cement and Concrete Research
25
, no. 
7
(October
1995
):
1501
1511
, https://doi.org/10.1016/0008-8846(95)00144-2
12.
de Larrard
F.
and
Sedran
T.
, “
Mixture-Proportioning of High-Performance Concrete
,”
Cement and Concrete Research
32
, no. 
11
(November
2002
):
1699
1704
, https://doi.org/10.1016/S0008-8846(02)00861-X
13.
Abellán-García
J.
,
Fernández-Gómez
J. A.
,
Torres-Castellanos
N.
, and
Núñez-López
A. M.
, “
Tensile Behavior of Normal-Strength Steel-Fiber Green Ultra-High-Performance Fiber-Reinforced Concrete
,”
ACI Materials Journal
118
, no. 
1
(January
2021
):
127
138
, https://doi.org/10.14359/51725992
14.
Kou
S. C.
and
Xing
F.
, “
The Effect of Recycled Glass Powder and Reject Fly Ash on the Mechanical Properties of Fibre-Reinforced Ultrahigh Performance Concrete
,”
Advances in Materials Science and Engineering 2012
(May
2012
): 263243, https://doi.org/10.1155/2012/263243
15.
Soliman
N. A.
and
Tagnit-Hamou
A.
, “
Using Glass Sand as an Alternative for Quartz Sand in UHPC
,”
Construction and Building Materials
145
(August
2017
):
243
252
, https://doi.org/10.1016/j.conbuildmat.2017.03.187
16.
Abellán-García
J.
, “
Comparison of Artificial Intelligence and Multivariate Regression in Modeling the Flexural Behavior of UHPFRC
,”
Dyna
87
, no. 
214
(July
2020
):
239
248
, http://doi.org/10.15446/dyna.v87n214.86172
17.
Abellán-García
J.
,
Fernández-Gómez
J. A.
,
Torres-Castellanos
N.
, and
Núñez-López
A. M.
Machine Learning Prediction of Flexural Behavior of UHPFRC
,” in
Fibre Reinforced Concrete: Improvements and Innovations. BEFIB 2020
, ed.
Serna
P.
,
Llano-Torre
A.
,
Martí-Vargas
J. R.
, and
Navarro-Gregori
J.
(
Valencia, Spain
:
RILEM Bookseries
,
2020
):
570
583
, https://doi.org/10.1007/978-3-030-58482-5_52
18.
Kalny
M.
,
Kvasnicka
V.
, and
Komanec
J.
, “
First Practical Applications of the UHPC in the Czech Republic
,” in
Fourth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2016
),
147
148
.
19.
Shaaban
M.
and
Ahmed
S.
, “
Development of Ultra-High Performance Concrete Jointed Precast Decks and Concrete Piles in Integral Abutment Bridges
,” in
The First International Symposium on Jointless & Sustainable Bridges
(
Fuzhou, Fujian, China
,
2016
),
1
10
.
20.
Haber
Z. B.
,
Munoz
J. F.
, and
Graybeal
B. A.
,
Field Testing of an Ultra-High Performance Concrete Overlay
(
Georgetown, VA
:
U.S. Department of Transportation, Federal Highway Administration
,
2017
).
21.
Acker
P.
and
Behloul
M.
, “
Ductal Technology: A Large Spectrum of Properties, A Wide Range of Applications
,” in
International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2004
),
11
24
.
22.
Abellán
J.
,
Núñez
A.
, and
Arango
S.
, “
Pedestrian Bridge of UNAL in Manizales: A New UPHFRC Application in the Colombian Building Market
,” in
Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2020
),
43
44
.
23.
Abellán-García
J.
,
Nuñez-Lopez
A.
, and
Arango-Campo
S.
, “
Pedestrian Bridge over Las Vegas Avenue in Medellín. First Latin American Infrastructure in UHPFRC
,” in
Fibre Reinforced Concrete: Improvements and Innovations. BEFIB 2020
, ed.
Serna
P.
,
Llano-Torre
A.
,
Martí-Vargas
J. R.
, and
Navarro-Gregori
J.
(
Valencia, Spain
:
RILEM Bookseries
,
2020
),
864
872
, https://doi.org/10.1007/978-3-030-58482-5_76
24.
Rai
B.
and
Wille
K.
, “
Development and Testing of High / Ultra-High Early Strength Concrete
,” in
Fifth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2020
),
7
8
.
25.
Haber
Z. B.
,
De la Varga
I.
,
Graybeal
B. A.
,
Nakashoji
B.
, and
El-Helou
R.
,
Properties and Behavior of UHPC-Class Materials, FHWA-HRT-18-036
(
Georgetown, VA
:
U.S. Department of Transportation, Federal Highway Administration
,
2018
).
26.
Camacho Torregrosa
E.
, “
Dosage Optimization and Bolted Connections for UHPFRC Ties
” (PhD diss.,
Polytechnic University of Valencia
, Spain,
2013
).
27.
Toledo-Filho
R. D.
,
Koenders
E. A. B.
,
Formagini
S.
, and
Fairbairn
E. M. R.
, “
Performance Assessment of Ultra High Performance Fiber Reinforced Cementitious Composites in View of Sustainability
,”
Materials & Design
36
(April
2012
):
880
888
, https://doi.org/10.1016/j.matdes.2011.09.022
28.
Abellán-García
J.
,
Santofimio-Vargas
M. A.
, and
Torres-Castellanos
N.
, “
Analysis of Metakaolin as Partial Substitution of Ordinary Portland Cement in Reactive Powder Concrete
,”
Advances in Civil Engineering Materials
9
, no. 
1
(July
2020
):
368
386
, https://doi.org/10.1520/ACEM20190224
29.
Abellán-García
J.
,
Núñez-López
A. M.
,
Torres Castellanos
N.
, and
Fernández-Gómez
J. A.
, “
Effect of FC3R on the Properties of Ultra-High-Performance Concrete with Recycled Glass
,”
Dyna
86
, no. 
211
(October–December
2019
):
84
93
, https://doi.org/10.15446/dyna.v86n211.79596
30.
Abellán-García
J.
,
Núñez-López
A. M.
,
Torres Castellanos
N.
, and
Fernández-Gómez
J. A.
, “
Factorial Design of Reactive Concrete Powder Containing Electric Arc Slag Furnace and Recycled Glass Powder
,”
Dyna
87
, no. 
213
(April–June
2020
):
42
51
, https://doi.org/10.15446/dyna.v87n213.82655
31.
Abellan
J.
,
Torres
N.
,
Núñez
A.
, and
Fernández
J.
, “
Ultra High Performance Fiber Reinforced Concrete: State of the Art, Applications and Possibilities into the Latin American Market
” (
paper presentation, 38th Jornadas Sudamericanas de Ingeniería Estructural
,
Lima, Peru
, October 24,
2018
).
32.
Abellán-García
J.
, “
Four-Layer Perceptron Approach for Strength Prediction of UHPC
,”
Construction and Building Materials
256
(September
2020
): 119465, https://doi.org/10.1016/j.conbuildmat.2020.119465
33.
Abellán García
J.
,
Fernandez Gómez
J.
, and
Torres Castellanos
N.
, “
Properties Prediction of Environmentally Friendly Ultra-High-Performance Concrete Using Artificial Neural Networks
,”
European Journal of Environmental and Civil Engineering
24
, no. 
6
(May
2020
), https://doi.org/10.1080/19648189.2020.1762749
34.
Abellan
J.
,
Torres
N.
,
Núñez
A.
, and
Fernández
J.
, “
Influencia del Exponente de Fuller, la Relación Agua Conglomerante y el Contenido en Policarboxilato en Concretos de Muy Altas Prestaciones
” (
paper presentation, Fourth Congreso Internacional de Ingenieria Civil
,
Havana, Cuba
, November 30,
2018
).
35.
Moriasi
D. N.
,
Arnold
J. G.
,
Van Liew
M. W.
,
Bingner
R. L.
,
Harmel
R. D.
, and
Veith
T. L.
, “
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations
,”
American Society of Agricultural and Biological Engineers
50
, no. 
3
(March
2007
):
885
900
.
36.
Chandwani
V.
,
Agrawal
V.
, and
Nagar
R.
, “
Modeling Slump of Ready Mix Concrete using Genetic Algorithms Assisted Training of Artificial Neural Networks
,”
Expert Systems with Applications
42
, no. 
2
(February
2015
):
885
893
, https://doi.org/10.1016/j.eswa.2014.08.048
37.
Srinivasulu
S.
and
Jain
A.
, “
A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall–Runoff Models
,”
Applied Soft Computing
6
, no. 
3
(March
2006
):
295
306
, https://doi.org/10.1016/j.asoc.2005.02.002
38.
Nash
J. E.
and
Sutcliffe
J. V.
, “
River Flow Forecasting through Conceptual Models Part I – A Discussion of Principles
,”
Journal of Hydrology
10
, no. 
3
(April
1970
):
282
290
, https://doi.org/10.1016/0022-1694(70)90255-6
39.
Olden
J. D.
and
Jackson
D. A.
, “
Illuminating the ‘Black Box’: A Randomization Approach for Understanding Variable Contributions in Artificial Neural Networks
,”
Ecological Modelling
154
, nos. 
1–2
(March
2002
):
135
150
, https://doi.org/10.1016/S0304-3800(02)00064-9
40.
Olden
J. D.
,
Joy
M. K.
, and
Death
R. G.
, “
An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data
,”
Ecological Modelling
178
, nos. 
3–4
(March
2004
):
389
397
, https://doi.org/10.1016/j.ecolmodel.2004.03.013
41.
Franceschini
S.
,
Gandola
E.
,
Martinoli
M.
,
Tancioni
L.
, and
Scardi
M.
, “
Cascaded Neural Networks Improving Fish Species Prediction Accuracy: The Role of the Biotic Information
,”
Scientific Reports
8
(March
2018
): 4581, https://doi.org/10.1038/s41598-018-22761-4
42.
Tomosawa
F.
, “
Development of a Kinetic Model for Hydration of Cement
” (paper presentation, Tenth International Congress on the Chemistry of Cement,
Gothenburg
:
Harald Justnes Publisher
, June 2–6,
1997
).
43.
Wang
X.-Y.
, “
Properties Prediction of Ultra High Performance Concrete Using Blended Cement Hydration Model
,”
Construction and Building Materials
 64 (
2014
):
1
10
, https://doi.org/10.1016/j.conbuildmat.2014.04.084
44.
Funk
J. E.
and
Dinger
D.
,
Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing
(
Berlin, Germany
:
Springer Science & Business Media
,
2013
).
45.
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)
, ASTM C109/C109M-20a (
West Conshohocken, PA
:
ASTM International
, approved February 15,
2020
), https://doi.org/10.1520/C0109_C0109M-20A
46.
Schmidt
M.
,
Fehling
E.
, and
Geisenhanslüke
C.
, eds.,
Proceedings of the International Symposium on Ultra High Performance Concrete
(
Kassel, Germany
:
Kassel University Press
,
2004
).
47.
Fehling
E.
,
Schmidt
C.
, and
Stüwald
S.
, eds.,
Proceedings of the Second International Symposium on Ultra High Performance Concrete
(
Kassel, Germany
:
Kassel University Press
,
2008
).
48.
Schmidt
M.
,
Fehling
E.
,
Glotzbach
C.
,
Fröhlich
S.
, and
Piotrowski
S.
, eds.,
Proceedings of Hipermat 2012 Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2012
).
49.
Fehling
E.
,
Middendorf
B.
, and
Thiemicke
J.
, eds.,
Proceedings of Hipermat 2016 Fourth International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
(
Kassel, Germany
:
Kassel University Press
,
2016
).
50.
de Larrard
F.
,
Concrete Mixture Proportioning: A Scientific Approach
, 1st ed. (
London
:
CRC Press
,
1999
), https://doi.org/10.1201/9781482272055
51.
de Larrard
F.
and
Sedran
T.
, “
Optimization of Ultra-High-Performance Concrete by the Use of a Packing Model
,”
Cement and Concrete Research
24
, no. 
6
(
1994
):
997
1009
, https://doi.org/10.1016/0008-8846(94)90022-1
52.
Serna
P.
,
López
J.
, and
Camacho
E.
, “
UHPFRC: De los Componentes a la Estructura
” (paper presentation,
Simposio Latinoamericano Sobre Concreto Autocompactante
,
Maceió Alagoas Brasil
, October 8–10,
2012
).
53.
Skazlic
M.
,
Bjegovic
D.
, and
Serdar
M.
, “
Influence of Test Specimens’ Geometry on Compressive Strength of Ultra-High Performance Concrete
,” in
Proceedings of the Second International Symposium on Ultra High Performance Concrete
(
Kassel, Germany
:
Kassel University Press
,
2008
),
295
301
.
54.
Naaman
A. E.
and
Wille
K.
, “
Some Correlation between High Packing Density, Ultra-High Performance, Flow Ability, and Fiber Reinforcement of a Concrete Matrix
” (paper presentation,
Bac2010, Congrersso. Ibêrico Sobre Betão Auto-Compactável
,
Lisboa, Portugal
, July 1–2,
2010
).
55.
Graybeal
B.
and
Davis
M.
, “
Cylinder or Cube: Strength Testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fiber-Reinforced Concrete
,”
ACI Materials Journal
105
, no. 
6
(November
2008
):
603
609
.
56.
Atkinson
A.
and
Riani
M.
,
Robust Diagnostic Regression Analysis,
1st ed. (
New York
:
Springer US
,
2000
).
57.
Härdle
W. K.
and
Simar
L.
,
Applied Multivariate Statistical Analysis
, 1st ed. (
Berlin, Germany
:
Springer-Verlag GmbH
,
2012
).
58.
Everitt
B.
and
Hothorn
T.
,
An Introduction to Applied Multivariate Analysis with R
, 1st ed. (
New York
:
Springer US
,
2015
).
59.
Arizzi
A.
and
Cultrone
G.
, “
Comparing the Pozzolanic Activity of Aerial Lime Mortars Made with Metakaolin and Fluid Catalytic Cracking Catalyst Residue: A Petrographic and Physical-Mechanical Study
,”
Construction and Building Materials
184
(September
2018
):
382
390
, https://doi.org/10.1016/j.conbuildmat.2018.07.002
60.
Li
Z.
and
Rangaraju
P. R.
, “
Development of UHPC Using Ternary Blends of Ultra-Fine Class F Fly Ash, Meta-kaolin and Portland Cement
” (
paper presentation, First International Interactive Symposium on UHPC
,
Des Moines, IA
, July 18,
2016
).
61.
Tuan
N. V.
,
Ye
G.
,
Breugel
K. V.
,
Fraaij
A. L.
, and
Danh
B.
, “
The Study of Using Rice Husk Ash to Produce Ultra High Performance Concrete
,”
Construction and Building Materials
25
, no. 
4
(April
2011
):
2030
2035
, https://doi.org/10.1016/j.conbuildmat.2010.11.046
62.
Thien
V. V.
and
Ludwig
H. M.
, “
Proportioning Optimization of UHPC Containing Rice Husk Ash and Ground Granulated Blast-Furnace Slag
,” in
Third International Symposium on UHPC and Nanotechnology for High Performance Construction Materials
, 1st ed. (
Kassel, Germany
:
Kassel University Press
,
2012
),
197
205
.
63.
Chollet
F.
and
Allaire
J. J.
,
Deep Learning with R
, 1st ed. (
Shelter Island, NY
:
Manning Publications Co.
,
2018
).
64.
Abellán-García
J.
and
Guzmán-Guzmán
J. S.
, “
Random Forest-Based Optimization of UHPFRC under Ductility Requirements for Seismic Retrofitting Applications
,”
Construction and Building Materials
285
(May
2021
): 122869, https://doi.org/10.1016/j.conbuildmat.2021.122869
65.
Adeli
H.
, “
Neural Networks in Civil Engineering: 1989–2000
,”
Computer-Aided Civil and Infrastructure Engineering
16
(March
2001
):
126
142
, https://doi.org/10.1111/0885-9507.00219
66.
Rosenblatt
F.
, “
The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain
,”
Psychological Review
65
, no. 
6
(November
1958
):
386
408
, https://doi.org/10.1037/h0042519
67.
Estebon
M. D.
,
Perceptrons: An Associative Learning Network
(
Blacksburg, VA
:
Virginia Tech
,
1997
).
68.
Rumelhart
D.
,
Hinton
G.
, and
Williams
R.
, “
Learning Internal Representations by Error Propagation
,” in
Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol. 1: Foundations
(
Cambridge, MA
:
MIT Press
, January
1986
),
318
362
.
69.
Mushgil
H. M.
,
Alani
H. A.
, and
George
L. E.
, “
Comparison between Resilient and Standard Back Propagation Algorithms Efficiency in Pattern Recognition
,”
International Journal of Scientific & Engineering Research
6
, no. 
3
(March
2015
):
773
778
.
70.
Prasad
N.
,
Singh
R.
, and
Lal
S. P.
, “
Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification
,” in
Proceedings of International Conference on Computational Intelligence, Modelling and Simulation
(
Washington, DC
:
IEEE Computer Society
,
2013
), 29–34, https://doi.org/10.1109/CIMSim.2013.14
71.
R Core Team “
R: A Language and Environment for Statistical Computing
,”
The R Foundation
,
2018
, http://web.archive.org/web/20200604224634/https://www.r-project.org/
72.
Günther
F.
and
Fritsch
S.
, “
neuralnet: Training of Neural Networks
,”
The R Journal
2
, no. 
1
(June
2010
):
30
38
, https://doi.org/10.32614/RJ-2010-006
73.
Wang
D.
,
Shi
C.
,
Wu
Z.
,
Xiao
J.
,
Huang
Z.
, and
Fang
Z.
, “
A Review on Ultra High Performance Concrete: Part II. Hydration, Microstructure and Properties
,”
Construction and Building Materials
96
(October
2015
):
368
377
, https://doi.org/10.1016/j.conbuildmat.2015.08.095
74.
Zhang
J.
and
Zhao
Y.
, “
Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete Containing Supplementary Cementitious Materials
,”
Advances in Materials Science and Engineering 2017
(December
2017
): 4563164, https://doi.org/10.1155/2017/4563164
75.
Ghafari
E.
,
Bandarabadi
M.
,
Costa
H.
, and
Júlio
E.
, “
Prediction of Fresh and Hardened State Properties of UHPC: Comparative Study of Statistical Mixture Design and an Artificial Neural Network Model
,”
Journal of Materials in Civil Engineering
27
, no. 
11
(February
2015
): 04015017, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001270
76.
Khatib
J. M.
and
Wild
S.
, “
Pore Size Distribution of Metakaolin Paste
,”
Cement and Concrete Research
26
, no. 
10
(October
1996
):
1545
1553
, https://doi.org/10.1016/0008-8846(96)00147-0
77.
Poon
C.-S.
,
Lam
L.
,
Kou
S. C.
,
Wong
Y.-L.
, and
Wong
R.
, “
Rate of Pozzolanic Reaction of Metakaolin in High-Performance Cement Pastes
,”
Cement and Concrete Research
31
, no. 
9
(September
2001
):
1301
1306
, https://doi.org/10.1016/S0008-8846(01)00581-6
78.
Payá
J.
,
Monzó
J. M.
,
Borrachero
M. V.
, and
Velázquez
S.
, “
Pozzolanic Reaction Rate of Fluid Catalytic Cracking Catalyst Residue (FC3R) in Cement Pastes
,”
Advances in Cement Research
25
, no. 
2
(
2013
):
112
118
, https://doi.org/10.1680/adcr.11.00053
79.
Behnood
A.
and
Ziari
H.
, “
Effects of Silica Fume Addition and Water to Cement Ratio on the Properties of High-Strength Concrete after Exposure to High Temperatures
,”
Cement and Concrete Composites
30
, no. 
2
(February
2008
):
106
112
, https://doi.org/10.1016/j.cemconcomp.2007.06.003
80.
Correa-Yepes
J. A.
,
Rojas-Reyes
N. R.
, and
Tobón
J. I.
, “
Effect of Fly Ash and Silica Fume on Rheology, Compressive Strength, and Self-Compacting in Cement Mixtures
,”
Dyna
85
, no. 
206
(
2018
):
59
68
, https://doi.org/10.15446/dyna.v85n206.68960
81.
Ahmad
S.
,
Hakeem
I.
, and
Maslehuddin
M.
, “
Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand
,”
Advances in Materials Science and Engineering
2014 (August
2014
): 713531, https://doi.org/10.1155/2014/713531
82.
Turk
K.
and
Demirhan
S.
, “
Effect of Limestone Powder on the Rheological, Mechanical and Durability Properties of ECC
,”
European Journal of Environmental and Civil Engineering
21
, no. 
9
(February
2017
):
1151
1170
, https://doi.org/10.1080/19648189.2016.1150902
83.
Ghafoori
N.
,
Spitek
R.
, and
Najimi
M.
, “
Influence of Limestone Size and Content on Transport Properties of Self-Consolidating Concrete
,”
Construction and Building Materials
127
(November
2016
):
588
595
, https://doi.org/10.1016/j.conbuildmat.2016.10.051
84.
Mosaberpanah
M. A.
and
Eren
O.
, “
Effect of Quartz Powder, Quartz Sand and Water Curing Regimes on Mechanical Properties of UHPC Using Response Surface Modeling
,”
Advances in Concrete Construction
5
, no. 
5
(September
2017
):
481
492
, https://doi.org/10.12989/acc.2017.5.5.481
85.
Russel
G. H.
and
Graybeal
B. A.
,
Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community, Report No. FHWA-HRT-13-060
(
Georgetown, VA
:
U.S. Department of Transportation, Federal Highway Administration
,
2013
).
86.
Puertas
F.
,
Santos
H.
,
Palacios
M.
, and
Martínez-Ramírez
S.
, “
Polycarboxylate Superplasticiser Admixtures: Effect on Hydration, Microstructure and Rheological Behaviour in Cement Pastes
,”
Advances in Cement Research
17
, no. 
2
(April
2005
):
77
89
, https://doi.org/10.1680/adcr.2005.17.2.77
87.
Kubens
S.
,
Interaction of Cement and Admixtures and Its Influence on Rheological Properties
, 1st ed. (
Göttingen, Germany
:
Cuvillier Verlag
,
2010
).
88.
Ghafari
E.
,
Costa
H.
,
Júlio
E.
,
Portugal
A.
, and
Durães
L.
, “
Enhanced Durability of Ultra High Performance Concrete by Incorporating Supplementary Cementitious Materials
,” in
Second International Conference on Microstructural-Related Durability of Cementitious Composites
(
Amsterdam, The Netherlands
:
RILEM Publications SARL
,
2012
).
89.
Abellán-García
J.
,
Torres Castellanos
N.
,
Fernández-Gómez
J.
, and
Núñez-López
A.
, “
Ultra-High-Performance Concrete with Local High Unburned Carbon Fly Ash
,”
Dyna
88
, no. 
216
(January–March
2021
):
38
47
, https://doi.org/10.15446/dyna.v88n216.89234
90.
Mahmud
H. B.
,
Bahri
S.
,
Yee
Y. W.
, and
Yeap
Y. T.
, “
Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete
,”
World Academy of Science, Engineering and Technology
(February
2016
):
390
395
, https://doi.org/10.5281/zenodo.1123585
This content is only available via PDF.
You do not currently have access to this content.