Abstract

This research reports on the effects of using ultrafine metakaolin to improve the durability properties of concrete. The particle size of ultrafine metakaolin was obtained using high-energy milling with 2 h of grinding. An experimental investigation was carried out by replacing portland composite cement with 5 % and 10 % ultrafine metakaolin. The results show that the optimum amount of ultrafine metakaolin in concrete mixes is 10 % by weight. For instance, the compressive strength of the concrete specimens with 10 % ultrafine metakaolin (UM-10) improved the compressive strength by 123 % at 3 days, 85 % at 7 days, and 53 % at 28 days, respectively. The results from water sorptivity and volume permeable void tests also confirmed the significant effects of ultrafine metakaolin in terms of it improving the durability resistance and increasing the density of the concrete. The water sorptivity value of the UM-10 sample was found to be 76 % and 68 % lower compared to the control concrete (PC). The percentage of the volume of the permeable voids in UM-10 was also reduced at about 70 %, indicating the modification of the pore size distribution because of the ultrafine sizes of the metakaolin. The results were confirmed by microstructure analysis such as scanning electron microscopy/backscattered electron image, X-ray diffraction, and differential thermal analysis/thermogravimetric analysis conducted on hardened cement paste with and without ultrafine metakaolin. It was concluded that the addition of ultrafine metakaolin influences the pore modification and reduces the calcium hydroxide (CH) content, thus initiating the formation of calcium silicate hydrate gel as one of the beneficial effects of amorphous ultrafine metakaolin that results in the enhancement of the performance of the cement concrete composites with ultrafine metakaolin.

References

1.
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
, ASTM C618-19 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2019
), https://doi.org/10.1520/C0618-19
2.
Vu
D. D.
, “
Strength Properties of Metakaolin-Blended Paste, Mortar and Concrete
” (PhD diss.,
Delt University
,
2002
).
3.
Supit
S. W. M.
,
Rumbayan
R.
, and
Ticoalu
A.
, “
A Study on the Effects of Metakaolin from Toraget Village in Indonesia, on Cement Concrete Properties
,”
International Journal on Advances in Mechanical and Civil Engineering
3
, no. 
5
(
2016
):
76
80
.
4.
Badogiannis
E.
,
Kakali
G.
, and
Tsivilis
S.
, “
Metakaolin as Supplementary Cementitious Material: Optimization of Kaolin to Metakaolin Conversion
,”
Journal of Thermal Analysis and Calorimetry
81
, no. 2 (
2005
):
457
462
, https://doi.org/10.1007/s10973-005-0806-3
5.
Siddique
R.
and
Klaus
J.
, “
Influence of Metakaolin on the Properties of Mortar and Concrete: A Review
,”
Applied Clay Science
43
, nos. 
3–4
(
2009
):
392
400
, https://doi.org/10.1016/j.clay.2008.11.007
6.
Abo-El-Enein
S. A.
,
Amin
M. S.
,
El-Hosiny
F. I.
,
Hanafi
S.
,
ElSokkary
T. M.
, and
Hazem
M. M.
, “
Pozzolanic and Hydraulic Activity of Nano-Metakaolin
,”
HBRC Journal
10
, no. 
1
(
2014
):
64
72
, https://doi.org/10.1016/j.hbrcj.2013.09.006
7.
Curcio
F.
,
DeAngelis
B. A.
, and
Pagliolico
S.
, “
Metakaolin as a Pozzolanic Microfillers on High-Performance Mortars
,”
Cement and Concrete Research
28
, no. 
6
(
1998
):
803
809
, https://doi.org/10.1016/S0008-8846(98)00045-3
8.
Sayamipuk
S.
, “
Development of Durable Mortar and Concrete Incorporating Metakaolin from Thailand
” (PhD diss.,
Asian Institute of Technology
,
2000
).
9.
Batis
G.
,
Pantazopoulou
P.
,
Tsivilis
S.
, and
Badogiannis
E.
, “
The Effect of Metakaolin on the Corrosion Behavior of Cement Mortars
,”
Cement and Concrete Composites
27
, no. 
1
(
2005
):
125
130
, https://doi.org/10.1016/j.cemconcomp.2004.02.041
10.
Yazıcı
Ş.
,
Arel
H. Ş.
, and
Anuk
D.
, “
Influences of Metakaolin on the Durability and Mechanical Properties of Mortars
,”
Arabian Journal for Science and Engineering
39
, no. 
12
(
2014
):
8585
8592
, https://doi.org/10.1007/s13369-014-1413-z
11.
Poon
C. S.
,
Kou
S. C.
, and
Lam
L.
, “
Compressive Strength, Chloride Diffusivity and Pore Structure of High Performance Metakaolin and Silica Fume Concrete
,”
Construction and Building Material
20
, no. 
10
(
2006
):
858
865
, https://doi.org/10.1016/j.conbuildmat.2005.07.001
12.
Sobolev
K.
,
Flores
I.
,
Hermosillo
R.
, and
Torres-Martínez
L. M.
, “
Nanomaterials and Nanotechnology for High-Performance Cement Composites
,” in
Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives
(
Farmington Hills, MI
:
American Concrete Institute
,
2006
),
91
118
.
13.
Carmichael
J.
,
Prince
M.
, and
Arulraj
P.
, “
Influence of Nano Materials on Consistency, Setting Time and Compressive Strength of Cement Mortar
,”
Engineering Science and Technology, an International Journal
2
, no. 
1
(
2012
):
158
162
.
14.
Supit
S. W. M.
and
Shaikh
F. U. A.
, “
Durability Properties of High Volume Fly Ash Concrete Containing Nano-Silica
,”
Materials and Structures
48
, no. 
8
(
2015
):
2431
2445
, https://doi.org/10.1617/s11527-014-0329-0
15.
Karthikeyan
B.
and
Dhinakaran
G.
, “
Effect of Ultra-Fine Sio2 and Metakaolin on High Strength Concrete in Aggressive Environment
,”
Scientia Iranica
24
, no. 
1
(
2017
):
1
10
, https://doi.org/10.24200/sci.2017.2371
16.
Morsy
M. S.
,
Alsayed
S. H.
, and
Aqel
M.
, “
Effect of Nano-Clay on Mechanical Properties and Microstructure of Ordinary Portland Cement Mortar
,”
International Journal of Civil & Environmental Engineering
10
, no. 
01
(
2010
):
21
25
.
17.
Aiswarya
S.
,
Arulraj
P.
, and
Narendran
A.
, “
Experimental Investigation on Concrete Containing Nano-Metakaolin
,”
Engineering Science and Technology, an International Journal
3
, no. 
1
(
2013
):
180
187
.
18.
Morsy
M. S.
,
Al-Salloum
Y. A.
,
Abbas
H.
, and
Alsayed
S. H.
, “
Behavior of Blended Cement Mortars Containing Nano-Metakaolin at Elevated Temperatures
,”
Construction and Building Materials
35
(October
2012
):
900
905
, https://doi.org/10.1016/j.conbuildmat.2012.04.099
19.
Muhd Norhasri
M. S.
,
Hamidah
M. S.
.
Mohd Fadzil
A.
, and
Megawati
O.
, “
Inclusion of Nano Metakaolin as Additive in Ultra High Performance Concrete (UHPC)
,”
Construction and Building Materials
127
(November
2016
):
167
175
, https://doi.org/10.1016/j.conbuildmat.2016.09.127
20.
Fadzil
A. M.
,
Norhasri
M. S. M.
,
Hamidah
M. S.
,
Zaidi
M. R.
, and
Faizal
J. M.
, “
Alteration of Nano Metakaolin for Ultra High Performance Concrete
,” in
Proceedings of the International Civil and Infrastructure Engineering Conference 2013
, ed. (
Singapore
:
Springer
,
2014
),
887
894
.
21.
Shoukry
H.
,
Kotkata
M. F.
,
Abo-el-Enein
S. A.
, and
Morsy
M. S.
, “
Flexural Strength and Physical Properties of Fiber Reinforced Nano Metakaolin Cementitious Surface Compound
,”
Construction and Building Materials
43
(June
2013
):
453
460
, https://doi.org/10.1016/j.conbuildmat.2013.02.030
22.
Yanguatin
H.
.
Tobón
J.
, and
Ramírez
J.
, “
Pozzolanic Reactivity of Kaolin Clays, a Review
,”
Revista Ingeniería de Construcción
32
, no. 
2
(
2017
):
13
24
, https://doi.org/10.4067/S0718-50732017000200002
23.
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)
, ASTM C109/C109-20b (
West Conshohocken, PA
:
ASTM International
, approved June 15,
2020
). https://doi.org/10.1520/C0109_C0109M-20B
24.
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
, ASTM C39/C39M-20 (
West Conshohocken, PA
:
ASTM International
, approved February 1,
2020
), https://doi.org/10.1520/C0039_C0039M-20
25.
Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes
, ASTM C1585-20 (West Conshohocken, PA:
ASTM International
, approved September 1,
2020
), https://doi.org/10.1520/C1585-20
26.
Standard Test Method for Density, Absorption, and Voids in Hardened Concrete
, ASTM C642-13 (West Conshohocken, PA:
ASTM International
, approved February 1,
2013
), https://doi.org/10.1520/C0642-13
27.
Taylor
H. F. W.
,
Cement Chemistry
(
London
:
Academic Press Limited
,
1990
).
28.
El-Diadamony
H.
,
Amer
A. A.
,
Sokkary
T. M.
, and
El-Hoseny
S.
, “
Hydration and Characteristics of Metakaolin Pozzolanic Cement Pastes
,”
HBRC Journal
14
, no. 
2
(
2018
):
150
158
, https://doi.org/10.1016/j.hbrcj.2015.05.005
29.
Ramezanianpour
A. A.
,
Cement Replacement Materials: Properties, Durability, Sustainability
(
Berlin, Germany
:
Springer
,
2014
), https://doi.org/10.1007/978-3-642-36721-2
30.
Samimi
K.
,
Estakhr
F.
,
Mahdikhani
M.
, and
Moodi
F.
, “
Influence of Metakaolin and Cements Types on Compressive C2 Strength and Transport Properties of Self-Consolidating Concrete
,”
International Journal of Architectural, Civil and Construction Sciences
12
, no. 
3
(
2018
):
243
249
, https://doi.org/10.5281/zenodo.1315975
31.
Fan
Y.
,
Zhang
S.
,
Kawashima
S.
, and
Shah
S. P.
, “
Influence of Kaolinite Clay on the Chloride Diffusion Property of Cement-Based Materials
,”
Cement and Concrete Composites
45
(January
2014
):
117
124
, https://doi.org/10.1016/j.cemconcomp.2013.09.021
32.
Si-Ahmed
M.
,
Belakrouf
A.
, and
Kenai
S.
, “
Influence of Metakaolin on the Performance of Mortars and Concretes
,”
International Journal of Architectural, Civil and Construction Sciences
6
, no. 
11
(
2012
):
937
940
, https://doi.org/10.5281/zenodo.1331725
This content is only available via PDF.
You do not currently have access to this content.