Abstract

A test program was carried out to examine the relative behavior of normal-strength concrete (NSC) and high-strength concrete (HSC). The experimental program included macroscopic and microscopic study of NSC and HSC specimens (designed compressive strengths of 27.6 MPa and 82.8 MPa at 28 days). The macro-behavior of concrete was determined on the basis of multi-axial testing, while the micro-behavior was evaluated using acoustic emission (AE) test and optical petrographic microscopic analysis. The results reveal that, for both NSC and HSC, macro-responses are dependent on and a manifestation of various micromechanical changes. The normal-strength concrete yielded a very different behavior in changes of internal microstructure as compared to the high-strength concrete.

References

1.
Wong
,
R. C. K.
and
Chau
,
K. T.
, “
Estimation of Air Void and Aggregate Spatial Distributions in Concrete under Uniaxial Compression Using Computer Tomography Scanning
,”
Cem. Concr. Res.
, Vol.
35
,
2005
, pp.
1566
1576
. https://doi.org/10.1016/j.cemconres.2004.08.016
2.
Luo
,
X.
,
Sun
,
W.
, and
Chan
,
S. Y. N.
, “
Effect of Heating and Cooling Regimes on Residual Strength and Microstructure of Normal Strength and High-Performance Concrete
,”
Cem. Concr. Res.
, Vol.
30
,
2000
, pp.
379
383
. https://doi.org/10.1016/S0008-8846(99)00264-1
3.
Neville
,
A.
and
Aitcin
,
P.-C.
, “
High Performance Concrete—An Overview
,”
Mater. Struct.
, Vol.
31
,
1998
, pp.
111
117
. https://doi.org/10.1007/BF02486473
4.
ACI Committee 363, “
State-of-the-Art Report on High-Strength Concrete
,” Report No. ACI 363R-92, American Concrete Institute, Vol.
39
,
1965
, pp.
274
278
.
5.
Kupfer
,
H. B.
and
Gerstle
,
K. H.
, “
Behavior of Concrete under Biaxial Stresses
,”
Eng. Mech. Div.
, Vol.
99
,
1973
, pp.
852
866
.
6.
Chen
,
A. C. T.
and
Chen
,
W. F.
, “
Constitutive Relations for Concrete
,”
J. Eng. Mech. Div.
, Vol.
101
,
1975
, pp.
415
481
.
7.
Kotsovosm
,
M. D.
and
Newman
,
J. B.
, “
Generalized Stress–Strain Relations for Concrete
,”
J. Eng. Mech. Div.
, Vol.
104
,
1978
, pp.
845
856
.
8.
Ottosen
,
N. S.
, “
A Failure Criterion for Concrete
,”
J. Eng. Mech. Div.
, Vol.
103
,
1977
, pp.
527
535
.
9.
Williams
,
K. J.
and
Warnke
,
E. P.
, “
Constitutive Model for the Triaxial Behavior of Concrete
,”
Proceedings of Seminar on Concrete Structures to Triaxial Stresses
,
International Association for Bridge and Structural Engineering
,
Bergamo, Zurich
,
1974
.
10.
Lade
,
P. V.
, “
Three-Parameters Failure Criterion for Concrete
,”
J. Eng. Mech. Div.
, Vol.
108
,
1982
, pp.
850
863
.
11.
Seow
,
P. E. C.
and
Swaddiwudhipong
,
S.
, “
Failure Surface for Concrete under Multiaxial Load—A Unified Approach
,”
J. Mater. Civ. Eng.
, Vol.
17
,
2005
, pp.
219
228
. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(219)
12.
Rutland
,
C. A.
and
Wang
,
M. L.
, “
The Effects of Confinement on the Failure Orientation in Cementitious Materials Experimental Observations
,”
Cem. Concr. Composites
, Vol.
19
,
1997
, pp.
149
160
. https://doi.org/10.1016/S0958-9465(97)00005-X
13.
Nelson
,
E. L.
,
Carrasquillo
,
R. L.
, and
Fowler
,
D. W.
, “
Behavior and Failure of High-Strength Concrete Subjected to Biaxial-Cyclic Compression Loading
,”
ACI Mater. J.
, Vol.
85
,
1988
, pp.
248
253
.
14.
Xie
,
J.
,
Elwi
,
A. E.
, and
MacGregor
,
J. G.
, “
Mechanical Properties of Three High-Strength Concretes Containing Silica Fume
,”
ACI Mater. J.
, Vol.
92
,
1995
, pp.
135
145
.
15.
Ansari
,
F.
and
Li
,
Q.
, “
High-Strength Concrete Subjected to Triaxial Compression
,”
ACI Mater. J.
, Vol.
95
,
1998
, pp.
747
755
.
16.
Culfik
,
M. S.
and
Ozturan
,
T.
, “
Mechanics Properties of Normal and High Strength Concretes Subjected to High Temperatures and Using Image Analysis to Detect Bond Deteriorations
,”
Constr. Building Mater.
, Vol.
24
, No.
8
,
2010
, pp.
1486
1493
. https://doi.org/10.1016/j.conbuildmat.2010.01.020
17.
Folino
,
P.
and
Etse
,
G.
, “
Performance Dependent Model for Normal and High Strength Concretes
,”
Int. J. Solids Struct.
, Vol.
49
, No.
5
,
2012
, pp.
701
719
. https://doi.org/10.1016/j.ijsolstr.2011.11.020
18.
Li
,
Z.
,
Li
,
F.
,
Li
,
X.
, and
Yang
,
W.
, “
P-Wave Arrival Determination and AE Characterization of Concrete
,”
J. Eng. Mech.
, Vol.
126
,
2000
, pp.
194
200
. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:2(194)
19.
Hamstad
,
M. A.
, “
A Review: Acoustic Emission—A Tool for Composite-Materials Studies
,”
Exp. Mech.
, Vol.
26
,
1986
, pp.
7
13
. https://doi.org/10.1007/BF02319949
20.
Li
,
Z.
,
Li
,
F.
,
Zdunek
,
A.
,
Landis
,
E.
, and
Shah
,
S. P.
, “
Application of Acoustic Emission Technique to Detection of Reinforcing Steel Corrosion in Concrete
,”
ACI Mater. J.
, Vol.
95
,
1998
, pp.
68
76
.
21.
McCabe
,
W. M.
,
Koerner
,
R. M.
, and
Lord
,
A. E.
, Jr.
, “
Acoustic Emission Behavior of Concrete Laboratory Specimens
,”
ACI J.
, Vol.
73
,
1976
, pp.
367
371
.
22.
Reymond
,
M.-C.
,
Raharinaivo
,
A.
, and
Brachet
,
M.
, “
Characterization of Concrete Damages by Acoustic Emission Analysis
,”
J. Acoust. Emission
, Vol.
2
,
1983
, pp.
159
168
.
23.
Lockner
,
D. A.
,
Byerle
,
J. D.
,
Kuksenko
,
V.
,
Ponomarev
,
A.
, and
Sidorin
,
A.
, “
Quati-Static Fault Growth and Shear Fracture Energy in Granite
,”
Nature
, Vol.
350
,
1991
, pp.
39
42
. https://doi.org/10.1038/350039a0
24.
Lockner
,
D. A.
,
Moore
,
D. E.
, and
Reches
,
Z.
, “
Microcrack Interaction Leading to Shear Fracture
,”
Proceedings, 33rd U.S. Symposium on Rock Mechanics
,
Sante Fe, New Mexico
,
1992
, pp.
807
816
.
25.
Yanigidani
,
T.
,
Ehara
,
S.
,
Nishizawa
,
O.
,
Kusunose
,
K.
, and
Terada
,
M.
, “
Localization of Dilatancy in Oshima Granite under Constant Uniaxial Stress
,”
J. Geophys. Res.
, Vol.
90
,
1985
, pp.
6840
6858
. https://doi.org/10.1029/JB090iB08p06840
26.
Wu
,
K.
,
Chen
,
B.
, and
Yao
,
W.
, “
Study on the AE Characteristics of Fracture Process of Mortar, Concrete and Steel-Fiber-Reinforced Concrete Beams
,”
Cem. Concr. Res.
, Vol.
30
,
2000
, pp.
1495
1500
. https://doi.org/10.1016/S0008-8846(00)00358-6
27.
Ohtsu
,
M.
,
Shigeishi
,
M.
, and
Munwam
,
M.
, “
Damage Mechanics and Fracture Mechanics of Concrete by Sigma
,”
Proceedings of Progress in Acoustic Emission IX
,
1998
, pp.
S65
S74
.
28.
Hadley
,
K.
, “
Comparison of Calculated and Observed Crack Densities and Seismic Velocities in Westerly Granite
,”
J. Geophys. Res.
, Vol.
81
,
1976
, pp.
3484
3494
. https://doi.org/10.1029/JB081i020p03484
29.
Mowar
,
S.
,
Zaman
,
M.
,
Steams
,
D. W.
, and
Roegiers
,
J.-C.
, “
Pore Collapse Mechanisms in Codoba Cream Limestone
,”
Proceeding of First North American Rock Mechanics Symposium
,
Austin, TX
,
1994
, pp.
767
773
.
30.
Georgoli
,
B.
and
Tsakiridis
,
P. E.
, “
Microstructure of Fire-Damaged Concrete: A Case Study
,”
Cem. Concr. Composites
, Vol.
27
,
2005
, pp.
255
259
. https://doi.org/10.1016/j.cemconcomp.2004.02.022
31.
Sutter
,
L. L.
,
Peterson
,
K. R.
,
Van Dam
,
T. J.
, and
Smith
,
K.
, “
Using Epifluorescence Optical Microscopy to Identify Causes of Concrete Distress Case Study
,”
Transp. Res. Rec.
, Vol.
1798
,
2002
, pp.
22
30
. https://doi.org/10.3141/1798-04
32.
Lopez
,
M.
,
Kahn
,
L. F.
, and
Kurtis
,
K. E.
, “
Characterization of Elastic and Time-Dependent Deformations in Normal Strength and High Performance Concrete by Image Analysis
,”
Cem. Concr. Res.
, Vol.
37
,
2007
, pp.
1265
1277
. https://doi.org/10.1016/j.cemconres.2007.05.011
33.
Mishra
,
D. K.
,
1991
, “
A High Capacity Cubical Device: Development and Performance Evaluation
,” M.S. thesis,
University of Oklahoma
, Norman, OK.
34.
Chin
,
M. P.
,
2001
, “
Laboratory Testing and Constitutive Modeling of High Performance Concrete (HSC)
,” M.S. thesis,
University of Oklahoma
, Norman, OK.
This content is only available via PDF.
You do not currently have access to this content.