Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 90
Keywords: Kinematics
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research-Article
J Biomech Eng. June 2021, 143(6): 061013.
Paper No: BIO-20-1396
Published Online: March 17, 2021
...) characterize load transmission paths and kinematics of the subaxial cervical spine under shear loading, and (2) assess a contemporary finite element cervical spine model using this data. Subaxial functional spinal units (FSUs) were subjected to anterior, posterior, and lateral shear forces (200 N) applied with...
Abstract
The cervical spine experiences shear forces during everyday activities and injurious events yet there is a paucity of biomechanical data characterizing the cervical spine under shear loading. This study aimed to (1) characterize load transmission paths and kinematics of the subaxial cervical spine under shear loading, and (2) assess a contemporary finite element cervical spine model using this data. Subaxial functional spinal units (FSUs) were subjected to anterior, posterior, and lateral shear forces (200 N) applied with and without superimposed axial compression preload (200 N) while monitoring spine kinematics. Load transmission paths were identified using strain gauges on the anterior vertebral body and lateral masses and a disc pressure sensor. Experimental conditions were simulated with cervical spine finite element model FSUs (GHBMC M50 version 5.0). The mean kinematics, vertebral strains, and disc pressures were compared to experimental results. The shear force–displacement response typically demonstrated a toe region followed by a linear response, with higher stiffness in anterior shear relative to lateral and posterior shear. Compressive axial preload decreased posterior and lateral shear stiffness and increased initial anterior shear stiffness. Load transmission patterns and kinematics suggest the facet joints play a key role in limiting anterior shear while the disc governs motion in posterior shear. The main cervical spine shear responses and trends are faithfully predicted by the GHBMC cervical spine model. These basic cervical spine biomechanics and the computational model can provide insight into mechanisms for facet dislocation in high severity impacts, and tissue distraction in low severity impacts.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research-Article
J Biomech Eng. May 2020, 142(5): 051003.
Paper No: BIO-19-1122
Published Online: January 17, 2020
... and ankle using a distractive force, allowing more natural sagittal and frontal plane ankle motion during gait. To evaluate its efficacy, this study compared ankle joint kinematics and plantar pressures among the DAO, standard double upright ankle-foot orthosis (DUAFO), and a nonorthosis control (CON...
Abstract
Patients who sustain irreversible cartilage damage or joint instability from ankle injuries are likely to develop ankle osteoarthritis (OA). A dynamic ankle orthosis (DAO) was recently designed with the intent to offload the foot and ankle using a distractive force, allowing more natural sagittal and frontal plane ankle motion during gait. To evaluate its efficacy, this study compared ankle joint kinematics and plantar pressures among the DAO, standard double upright ankle-foot orthosis (DUAFO), and a nonorthosis control (CON) condition in healthy adults during walking. Ten healthy subjects (26 ± 3.8 yr; 69.6 ± 12.7 kg; and 1.69 ± 0.07 m) walked on a treadmill at 1.4 m/s in three orthosis conditions: CON, DAO, and DUAFO. Ankle kinematics were assessed using a three-dimensional (3D) motion capture system and in-shoe plantar pressures were measured for seven areas of the foot. DAO reduced hallux peak plantar pressures (PPs) compared to CON and DUAFO. PPs under toes 2–5 were smaller in DAO than DUAFO, but greater in DUAFO compared to CON. Early stance peak plantarflexion (PF) angular velocity was smaller in DAO compared to CON and DUAFO. Eversion (EV) ROM was much smaller in DUAFO compared to CON and DAO. Early stance peak eversion angular velocity was smaller in DAO and much smaller in DUAFO compared to CON. This study demonstrates the capacity of the DAO to provide offloading during ambulation without greatly affecting kinematic parameters including frontal plane ankle motion compared to CON. Future work will assess the effectiveness of the DAO in a clinical osteoarthritic population.
Journal Articles
Amy Saari, Christopher R. Dennison, Qingan Zhu, Timothy S. Nelson, Philip Morley, Thomas R. Oxland, Peter A. Cripton, Eyal Itshayek
Journal:
Journal of Biomechanical Engineering
Article Type: Research-Article
J Biomech Eng. November 2013, 135(11): 111003.
Paper No: BIO-12-1390
Published Online: September 24, 2013
... [44] Miura , T. , Panjabi , M. M. , and Cripton , P. A. , 2002 , “ A Method to Simulate In Vivo Cervical Spine Kinematics Using In Vitro Compressive Preload ,” Spine , 27 , pp. 43 – 48 . 10.1097/00007632-200201010-00011 [45] Moroney , S. P. , Schultz , A. B. , and...
Abstract
Current understanding of the biomechanics of cervical spine injuries in head-first impact is based on decades of epidemiology, mathematical models, and in vitro experimental studies. Recent mathematical modeling suggests that muscle activation and muscle forces influence injury risk and mechanics in head-first impact. It is also known that muscle forces are central to the overall physiologic stability of the cervical spine. Despite this knowledge, the vast majority of in vitro head-first impact models do not incorporate musculature. We hypothesize that the simulation of the stabilizing mechanisms of musculature during head-first osteoligamentous cervical spine experiments will influence the resulting kinematics and injury mechanisms. Therefore, the objective of this study was to document differences in the kinematics, kinetics, and injuries of ex vivo osteoligamentous human cervical spine and surrogate head complexes that were instrumented with simulated musculature relative to specimens that were not instrumented with musculature. We simulated a head-first impact (3 m/s impact speed) using cervical spines and surrogate head specimens (n = 12). Six spines were instrumented with a follower load to simulate in vivo compressive muscle forces, while six were not. The principal finding was that the axial coupling of the cervical column between the head and the base of the cervical spine (T1) was increased in specimens with follower load. Increased axial coupling was indicated by a significantly reduced time between head impact and peak neck reaction force (p = 0.004) (and time to injury (p = 0.009)) in complexes with follower load relative to complexes without follower load. Kinematic reconstruction of vertebral motions indicated that all specimens experienced hyperextension and the spectrum of injuries in all specimens were consistent with a primary hyperextension injury mechanism. These preliminary results suggest that simulating follower load that may be similar to in vivo muscle forces results in significantly different impact kinetics than in similar biomechanical tests where musculature is not simulated.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research-Article
J Biomech Eng. September 2013, 135(9): 091002.
Paper No: BIO-12-1296
Published Online: July 10, 2013
... Forces During Thumb-Index Finger Grasping ,” J. Appl. Biomech. , 27 ( 3 ), pp. 173 – 180 . [2] Cerveri , P. , De Momi , E. , Lopomo , N. , Baud-Bovy , G. , Barros , R. M. , and Ferrigno , G. , 2007 , “ Finger Kinematic Modeling and Real-Time Hand Motion Estimation...
Abstract
This study presents a methodology to determine thumb and index finger kinematics while utilizing a minimal set of markers. The motion capture of skin-surface markers presents inherent challenges for the accurate and comprehensive measurement of digit kinematics. As such, it is desirable to utilize robust methods for assessing digit kinematics with fewer markers. The approach presented in this study involved coordinate system alignment, locating joint centers of rotation, and a solution model to estimate three-dimensional (3-D) digit kinematics. The solution model for each digit was based on assumptions of rigid-body interactions, specific degrees of freedom (DOFs) at each located joint, and the aligned coordinate system definitions. Techniques of inverse kinematics and optimization were applied to calculate the 3-D position and orientation of digit segments during pinching between the thumb and index finger. The 3-D joint center locations were reliably fitted with mean coefficients of variation below 5%. A parameterized form of the solution model yielded feasible solutions that met specified tolerance and convergence criteria for over 85% of the test points. The solution results were intuitive to the pinching function. The thumb was measured to be rotated about the CMC joint to bring it into opposition to the index finger and larger rotational excursions (>10 deg) were observed in flexion/extension compared to abduction/adduction and axial rotation for all joints. While the solution model produced results similar to those computed from a full marker set, the model facilitated the usage of fewer markers, which inherently lessened the effects of passive motion error and reduced the post-experimental effort required for marker processing.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. October 2012, 134(10): 101004.
Published Online: October 1, 2012
... , “ Biomechanics of the Transverse Carpal Arch Under Carpal Bone Loading ,” Clin. Biomech. (Bristol, Avon), 25 ( 8 ), pp. 776 – 780 . 10.1016/j.clinbiomech.2010.05.011 3 de Lange , A. , Kauer , J. M. , and Huiskes , R. , 1985 , “ Kinematic Behavior of the Human Wrist Joint: A Roentgen...
Abstract
Change in carpal arch width (CAW) is associated with wrist movement, carpal tunnel release, or therapeutic tunnel manipulation. This study investigated the angular rotations of the distal carpal joints as the CAW was adjusted. The CAW was narrowed and widened by 2 and 4 mm in seven cadaveric specimens while the bone positions were tracked by a marker-based motion capture system. The joints mainly pronated during CAW narrowing and supinated during widening. Ranges of motion about the pronation axis for the hamate-capitate (H-C), capitate-trapezoid (C-Td), and trapezoid-trapezium (Td-Tm) joints were 8.1 ± 2.3 deg, 5.3 ± 1.3 deg, and 5.5 ± 3.5 deg, respectively. Differences between the angular rotations of the joints were found at ΔCAW = −4 mm about the pronation and ulnar-deviation axes. For the pronation axis, angular rotations of the H-C joint were larger than that of the C-Td and Td-Tm joints. Statistical interactions among the factors of joint, rotation axis, and ΔCAW indicated complex joint motion patterns. The complex three-dimensional motion of the bones can be attributed to several anatomical constraints such as bone arrangement, ligament attachments, and articular congruence. The results of this study provide insight into the mechanisms of carpal tunnel adaptations in response to biomechanical alterations of the structural components.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. December 2011, 133(12): 121009.
Published Online: December 28, 2011
... a function of the amount of error in the kinematic and muscle Jacobians and found to remain superior to the performance of the squared muscle stress cost function throughout the range examined. Table 2 Norms of the errors in the impairment estimation task, expressed a percentage of the norm of...
Abstract
Static optimization approaches to estimating muscle tensions rely on the assumption that the muscle activity pattern is in some sense optimal. However, in the case of individuals with a neuromuscular impairment, this assumption is likely not to hold true. We present an approach to muscle tension estimation that does not rely on any optimality assumptions. First, the nature of the impairment is estimated by reformulating the relationship between the muscle tensions and the external forces produced in terms of the deviation from the expected activation in the unimpaired case. This formulation allows the information from several force production tasks to be treated as a single coupled system. In a second step, the identified impairments are used to obtain a novel cost function for the muscle tension estimation task. In a simulation study of the index finger, the proposed method resulted in muscle tension errors with a mean norm of 23.3 ± 26.8% (percentage of the true solution norm), compared to 52.6 ± 24.8% when solving the estimation task using a cost function consisting of the sum of squared muscle stresses. Performance was also examined as a function of the amount of error in the kinematic and muscle Jacobians and found to remain superior to the performance of the squared muscle stress cost function throughout the range examined.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. November 2011, 133(11): 111007.
Published Online: December 8, 2011
...Yun-Seok Kang; Kevin Moorhouse; John H. Bolte, IV The ability to measure six degrees of freedom (6 DOF) head kinematics in motor vehicle crash conditions is important for assessing head-neck loads as well as brain injuries. A method for obtaining accurate 6 DOF head kinematics in short duration...
Abstract
The ability to measure six degrees of freedom (6 DOF) head kinematics in motor vehicle crash conditions is important for assessing head-neck loads as well as brain injuries. A method for obtaining accurate 6 DOF head kinematics in short duration impact conditions is proposed and validated in this study. The proposed methodology utilizes six accelerometers and three angular rate sensors (6aω configuration) such that an algebraic equation is used to determine angular acceleration with respect to the body-fixed coordinate system, and angular velocity is measured directly rather than numerically integrating the angular acceleration. Head impact tests to validate the method were conducted using the internal nine accelerometer head of the Hybrid III dummy and the proposed 6aω scheme in both low (2.3 m/s) and high (4.0 m/s) speed impact conditions. The 6aω method was compared with a nine accelerometer array sensor package (NAP) as well as a configuration of three accelerometers and three angular rate sensors (3aω), both of which have been commonly used to measure 6 DOF kinematics of the head for assessment of brain and neck injuries. The ability of each of the three methods (6aω, 3aω, and NAP) to accurately measure 6 DOF head kinematics was quantified by calculating the normalized root mean squared deviation (NRMSD), which provides an average percent error over time. Results from the head impact tests indicate that the proposed 6aω scheme is capable of producing angular accelerations and linear accelerations transformed to a remote location that are comparable to that determined from the NAP scheme in both low and high speed impact conditions. The 3aω scheme was found to be unable to provide accurate angular accelerations or linear accelerations transformed to a remote location in the high speed head impact condition due to the required numerical differentiation. Both the 6aω and 3aω schemes were capable of measuring accurate angular displacement while the NAP instrumentation was unable to produce accurate angular displacement due to double numerical integration. The proposed 6aω scheme appears to be capable of measuring accurate 6 DOF kinematics of the head in any severity of impact conditions.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Technical Briefs
J Biomech Eng. November 2011, 133(11): 114503.
Published Online: November 28, 2011
... software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological...
Abstract
Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.
Journal Articles
Michael J. Fassbind, Eric S. Rohr, Yangqiu Hu, David R. Haynor, Sorin Siegler, Bruce J. Sangeorzan, William R. Ledoux
Journal:
Journal of Biomechanical Engineering
Article Type: Technical Briefs
J Biomech Eng. October 2011, 133(10): 104502.
Published Online: November 3, 2011
... Transverse Tarsal Joint and Its Control ,” Clin. Orthop. , 16 , pp. 41 – 45 . 3 Van Langelaan , E. J. , 1983 , “ A Kinematic Analysis of the Tarsal Joints, an X-Ray Photogrammetric Study ,” Acta Orthop. Scand. Suppl. , 204 , pp. 1 – 269 . 4 Lundberg , A. , 1989 , “ Kinematics...
Abstract
The foot consists of many small bones with complicated joints that guide and limit motion. A variety of invasive and noninvasive means [mechanical, X-ray stereophotogrammetry, electromagnetic sensors, retro-reflective motion analysis, computer tomography (CT), and magnetic resonance imaging (MRI)] have been used to quantify foot bone motion. In the current study we used a foot plate with an electromagnetic sensor to determine an individual subject’s foot end range of motion (ROM) from maximum plantar flexion, internal rotation, and inversion to maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. We then used a custom built MRI-compatible device to hold each subject’s foot during scanning in eight unique positions determined from the end ROM data. The scan data were processed using software that allowed the bones to be segmented with the foot in the neutral position and the bones in the other seven positions to be registered to their base positions with minimal user intervention. Bone to bone motion was quantified using finite helical axes (FHA). FHA for the talocrural, talocalcaneal, and talonavicular joints compared well to published studies, which used a variety of technologies and input motions. This study describes a method for quantifying foot bone motion from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation with relatively little user processing time.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. October 2011, 133(10): 101002.
Published Online: October 31, 2011
... resolution increased from 35 to 12 μm/pixel. In addition, data collection in 10 ms, rather than 50 ms, intervals was found to be preferable. Increasing heart rate and systolic duration showed little change in wall shear rate patterns, with wall shear rate magnitude scaling by approximately the kinematic...
Abstract
Although left ventricular assist devices (LVADs) have had success in supporting severe heart failure patients, thrombus formation within these devices still limits their long term use. Research has shown that thrombosis in the Penn State pulsatile LVAD, on a polyurethane blood sac, is largely a function of the underlying fluid mechanics and may be correlated to wall shear rates below 500 s −1 . Given the large range of heart rate and systolic durations employed, in vivo it is useful to study the fluid mechanics of pulsatile LVADs under these conditions. Particle image velocimetry (PIV) was used to capture planar flow in the pump body of a Penn State 50 cubic centimeters (cc) LVAD for heart rates of 75–150 bpm and respective systolic durations of 38–50%. Shear rates were calculated along the lower device wall with attention given to the uncertainty of the shear rate measurement as a function of pixel magnification. Spatial and temporal shear rate changes associated with data collection frequency were also investigated. The accuracy of the shear rate calculation improved by approximately 40% as the resolution increased from 35 to 12 μm/pixel. In addition, data collection in 10 ms, rather than 50 ms, intervals was found to be preferable. Increasing heart rate and systolic duration showed little change in wall shear rate patterns, with wall shear rate magnitude scaling by approximately the kinematic viscosity divided by the square of the average inlet velocity, which is essentially half the friction coefficient. Changes in in vivo operating conditions strongly influence wall shear rates within our device, and likely play a significant role in thrombus deposition. Refinement of PIV techniques at higher magnifications can be useful in moving towards better prediction of thrombosis in LVADs.
Journal Articles
Matthew F. Gornet, Frank W. Chan, John C. Coleman, Brian Murrell, Russ P. Nockels, Brett A. Taylor, Todd H. Lanman, Jorge A. Ochoa
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. August 2011, 133(8): 081009.
Published Online: September 20, 2011
... promote fusion via a balance of stability, intra- and inter-level load sharing, and durability. The purpose of this study was to characterize the mechanical and biomechanical properties of a pedicle screw-based polyetheretherketone (PEEK) SRF system for the lumbar spine to compare its kinematic...
Abstract
The concept of semi-rigid fixation (SRF) has driven the development of spinal implants that utilize nonmetallic materials and novel rod geometries in an effort to promote fusion via a balance of stability, intra- and inter-level load sharing, and durability. The purpose of this study was to characterize the mechanical and biomechanical properties of a pedicle screw-based polyetheretherketone (PEEK) SRF system for the lumbar spine to compare its kinematic, structural, and durability performance profile against that of traditional lumbar fusion systems. Performance of the SRF system was characterized using a validated spectrum of experimental, computational, and in vitro testing. Finite element models were first used to optimize the size and shape of the polymeric rods and bound their performance parameters. Subsequently, benchtop tests determined the static and dynamic performance threshold of PEEK rods in relevant loading modes (flexion-extension (F/E), axial rotation (AR), and lateral bending (LB)). Numerical analyses evaluated the amount of anteroposterior column load sharing provided by both metallic and PEEK rods. Finally, a cadaveric spine simulator was used to determine the level of stability that PEEK rods provide. Under physiological loading conditions, a 6.35 mm nominal diameter oval PEEK rod construct unloads the bone-screw interface and increases anterior column load (approx. 75% anterior, 25% posterior) when compared to titanium (Ti) rod constructs. The PEEK construct’s stiffness demonstrated a value lower than that of all the metallic rod systems, regardless of diameter or metallic composition (78% < 5.5 mm Ti; 66% < 4.5 mm Ti; 38% < 3.6 mm Ti). The endurance limit of the PEEK construct was comparable to that of clinically successful metallic rod systems (135N at 5 × 10 6 cycles). Compared to the intact state, cadaveric spines implanted with PEEK constructs demonstrated a significant reduction of range of motion in all three loading directions (> 80% reduction in F/E, p < 0.001; > 70% reduction in LB, p < 0.001; > 54% reduction in AR, p < 0.001). There was no statistically significant difference in the stability provided by the PEEK rods and titanium rods in any mode (p = 0.769 for F/E; p = 0.085 for LB; p = 0.633 for AR). The CD HORIZON ® LEGACY ™ PEEK Rod System provided intervertebral stability comparable to currently marketed titanium lumbar fusion constructs. PEEK rods also more closely approximated the physiologic anteroposterior column load sharing compared to results with titanium rods. The durability, stability, strength, and biomechanical profile of PEEK rods were demonstrated and the potential advantages of SRF were highlighted.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. July 2011, 133(7): 071008.
Published Online: July 22, 2011
.... M. , Kirkendall , D. T. , and Garrett , W. E. , 2005 , “ Age and Gender Effects on Lower Extremity Kinematics of Youth Soccer Players in a Stop-Jump Task ,” Am. J. Sports. Med. , 33 ( 9 ), pp. 1356 – 1364 . 10.1177/0363546504273049 15 Blackburn , J. T. , and Padua...
Abstract
The incidence of anterior cruciate ligament (ACL) injury remains high, and there is a need for simple, cost effective methods to identify athletes at a higher risk for ACL injury. Wearable measurement systems offer potential methods to assess the risk of ACL injury during jumping tasks. The objective of this study was to assess the capacity of a wearable inertial-based system to evaluate ACL injury risk during jumping tasks. The system accuracy for measuring temporal events (initial contact, toe-off), jump height, and sagittal plane angles (knee, trunk) was assessed by comparing results obtained with the wearable system to simultaneous measurements obtained with a marker-based optoelectronic reference system. Thirty-eight healthy participants (20 male and 18 female) performed drop jumps with bilateral and unilateral support landing. The mean differences between the temporal events obtained with both systems were below 5 ms, and the precisions were below 24 ms. The mean jump heights measured with both systems differed by less than 1 mm, and the associations (Pearson correlation coefficients) were above 0.9. For the discrete angle parameters, there was an average association of 0.91 and precision of 3.5° for the knee flexion angle and an association of 0.77 and precision of 5.5° for the trunk lean. The results based on the receiver-operating characteristic (ROC) also demonstrated that the proposed wearable system could identify movements at higher risk for ACL injury. The area under the ROC plots was between 0.89 and 0.99 for the knee flexion angle and between 0.83 and 0.95 for the trunk lean. The wearable system demonstrated good concurrent validity with marker-based measurements and good discriminative performance in terms of the known risk factors for ACL injury. This study suggests that a wearable system could be a simple cost-effective tool for conducting risk screening or for providing focused feedback.
Journal Articles
J. M. Rosvold, S. P. Darcy, R. C. Peterson, Y. Achari, D. T. Corr, L. L. Marchuk, C. B. Frank, N. G. Shrive, Joshua M. Rosvold, Shon P. Darcy, Robert C. Peterson, Yamini Achari, David T. Corr, Linda L. Marchuk, Cyril B. Frank, Nigel G. Shrive
Journal:
Journal of Biomechanical Engineering
Article Type: Technical Briefs
J Biomech Eng. May 2011, 133(5): 054501.
Published Online: May 17, 2011
... 16 02 2011 17 05 2011 17 05 2011 Fujie , H. , Mabuchi , K. , Woo , S. L. , Livesay , G. A. , Arai , S. , and Tsukamoto , Y. , 1993 , “ The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology ,” ASME J. Biomech. Eng. 0148...
Abstract
Reproduction of the in vivo motions of joints has become possible with improvements in robot technology and in vivo measuring techniques. A motion analysis system has been used to measure the motions of the tibia and femur of the ovine stifle joint during normal gait. These in vivo motions are then reproduced with a parallel robot. To ensure that the motion of the joint is accurately reproduced and that the resulting data are reliable, the testing frame, the data acquisition system, and the effects of limitations of the testing platform need to be considered. Of the latter, the stiffness of the robot and the ability of the control system to process sequential points on the path of motion in a timely fashion for repeatable path accuracy are of particular importance. Use of the system developed will lead to a better understanding of the mechanical environment of joints and ligaments in vivo.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. May 2011, 133(5): 051005.
Published Online: April 28, 2011
... greater accuracy, and then a custom device typically allows. We created a six degree of freedom robotic cadaveric simulator and used it with a flatfoot model to quantify static bone positions at ten discrete instants over the stance phase of gait. In vivo tibial gait kinematics and ground reaction forces...
Abstract
The symptomatic flatfoot deformity (pes planus with peri-talar subluxation) can be a debilitating condition. Cadaveric flatfoot models have been employed to study the etiology of the deformity, as well as invasive and noninvasive surgical treatment strategies, by evaluating bone positions. Prior cadaveric flatfoot simulators, however, have not leveraged industrial robotic technologies, which provide several advantages as compared with the previously developed custom fabricated devices. Utilizing a robotic device allows the researcher to experimentally evaluate the flatfoot model at many static instants in the gait cycle, compared with most studies, which model only one to a maximum of three instances. Furthermore, the cadaveric tibia can be statically positioned with more degrees of freedom and with a greater accuracy, and then a custom device typically allows. We created a six degree of freedom robotic cadaveric simulator and used it with a flatfoot model to quantify static bone positions at ten discrete instants over the stance phase of gait. In vivo tibial gait kinematics and ground reaction forces were averaged from ten flatfoot subjects. A fresh frozen cadaveric lower limb was dissected and mounted in the robotic gait simulator (RGS). Biomechanically realistic extrinsic tendon forces, tibial kinematics, and vertical ground reaction forces were applied to the limb. In vitro bone angular position of the tibia, calcaneus, talus, navicular, medial cuneiform, and first metatarsal were recorded between 0% and 90% of stance phase at discrete 10% increments using a retroreflective six-camera motion analysis system. The foot was conditioned flat through ligament attenuation and axial cyclic loading. Post-flat testing was repeated to study the pes planus deformity. Comparison was then made between the pre-flat and post-flat conditions. The RGS was able to recreate ten gait positions of the in vivo pes planus subjects in static increments. The in vitro vertical ground reaction force was within ±1 standard deviation (SD) of the in vivo data. The in vitro sagittal, coronal, and transverse plane tibial kinematics were almost entirely within ±1 SD of the in vivo data. The model showed changes consistent with the flexible flatfoot pathology including the collapse of the medial arch and abduction of the forefoot, despite unexpected hindfoot inversion. Unlike previous static flatfoot models that use simplified tibial degrees of freedom to characterize only the midpoint of the stance phase or at most three gait positions, our simulator represented the stance phase of gait with ten discrete positions and with six tibial degrees of freedom. This system has the potential to replicate foot function to permit both noninvasive and surgical treatment evaluations throughout the stance phase of gait, perhaps eliciting unknown advantages or disadvantages of these treatments at other points in the gait cycle.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. May 2011, 133(5): 051003.
Published Online: April 11, 2011
... Roland , M. R. , Hull , M. L. , and Howell , S. M. , 2010 , “ Virtual Axis Finder: A New Method to Determine the Two Kinematic Axes of Rotation for the Tibio-Femoral Joint ,” ASME J. Biomech. Eng. 0148-0731 , 132 , p. 011009 . 10.1115/1.4000163 Woltring , H. J. , 1994...
Abstract
In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm , respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better ( p = 0.01 and p = 0.02 , respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p = 0.019 ). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. April 2011, 133(4): 041005.
Published Online: March 8, 2011
...Joonbum Bae; Kyoungchul Kong; Nancy Byl; Masayoshi Tomizuka Conventional gait rehabilitation treatment does not provide quantitative information on abnormal gait kinematics, and the match of the intervention strategy to the underlying clinical presentation may be limited by clinical expertise and...
Abstract
Conventional gait rehabilitation treatment does not provide quantitative information on abnormal gait kinematics, and the match of the intervention strategy to the underlying clinical presentation may be limited by clinical expertise and experience. Also the effect of rehabilitation treatment may be reduced as the rehabilitation treatment is achieved only in a clinical setting. In this paper, a mobile gait monitoring system (MGMS) is proposed for the diagnosis of abnormal gait and rehabilitation. The proposed MGMS consists of Smart Shoes and a microsignal processor with a touch screen display. It monitors patients’ gait by observing the ground reaction force (GRF) and the center of GRF, and analyzes the gait abnormality. Since visual feedback about patients’ GRFs and normal GRF patterns are provided by the MGMS, patients can practice the rehabilitation treatment by trying to follow the normal GRF patterns without restriction of time and place. The gait abnormality proposed in this paper is defined by the deviation between the patient’s GRFs and normal GRF patterns, which are constructed as GRF bands. The effectiveness of the proposed gait analysis methods with the MGMS has been verified by preliminary trials with patients suffering from gait disorders.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. March 2011, 133(3): 031009.
Published Online: February 8, 2011
... and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify...
Abstract
Tracking or predicting physiological fatigue is important for developing more robust training protocols and better energy supplements and/or reducing muscle injuries. Current methodologies are usually impractical and/or invasive and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify more optimal fatigue coordinates and provide a lower-dimensional reconstruction of local fatigue dynamics than the linear SOD. Both linear and nonlinear SODs were applied to PSW features estimated from measured kinematics to reconstruct muscle fatigue dynamics in subjects performing a sawing motion. Ten healthy young right-handed subjects pushed a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles were measured from the right upper extremity in addition to surface electromyography (EMG) recordings. The SOD coordinates of kinematic PSW features were compared against independently measured fatigue markers (i.e., mean and median EMG spectrum frequencies of individual muscle groups). This comparison was based on a least-squares linear fit of a fixed number of the dominant SOD coordinates to the appropriate local fatigue markers. Between subject variability showed that at most four to five nonlinear SOD coordinates were needed to reconstruct fatigue in local muscle groups, while on average 15 coordinates were needed for the linear SOD. Thus, the nonlinear coordinates provided a one-order-of-magnitude improvement over the linear ones.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. March 2011, 133(3): 031008.
Published Online: February 7, 2011
... ,” J. Orthop. Res. 0736-0266 , 28 ( 7 ), pp. 846 – 851 . biological tissues biomechanics injuries kinematics infraspinatus supraspinatus tendon repair strain mechanical interaction Contrary to H1, at 0 deg abduction and 30 deg internal rotation, there was a significant...
Abstract
Supraspinatus tendon tears are common and often propagate into larger tears that include the infraspinatus tendon, resulting in loss of function and increased pain. Previously, we showed that the supraspinatus and infraspinatus tendons mechanically interact through a range of rotation angles, potentially shielding the torn supraspinatus tendon from further injury while subjecting the infraspinatus tendon to increased risk of injury. Surgical repair of torn supraspinatus tendons is common, yet the effect of the repair on the infraspinatus tendon is unknown. Since we have established a relationship between strain in the supraspinatus and infraspinatus tendons the success of a supraspinatus tendon repair depends on its effect on the loading environment in the infraspinatus tendon. More specifically, the effect of transosseous supraspinatus tendon repair in comparison to one that utilizes suture anchors, as is commonly done with arthroscopic repairs, on this interaction through these joint positions will be evaluated. We hypothesize that at all joint positions evaluated, both repairs will restore the interaction between the two tendons. For both repairs, (1) increasing supraspinatus tendon load will increase infraspinatus tendon strain and (2) altering the rotation angle from internal to external will increase strain in the infraspinatus tendon. Strains were measured in the infraspinatus tendon insertion through a range of joint rotation angles and supraspinatus tendon loads, for the intact, transosseous, and suture anchor repaired supraspinatus tendons. Images corresponding to specific supraspinatus tendon loads were isolated for the infraspinatus tendon insertion for analysis. The effect of supraspinatus tendon repair on infraspinatus tendon strain differed with joint position. Altering the joint rotation did not change strain in the infraspinatus tendon for any supraspinatus tendon condition. Finally, increasing supraspinatus tendon load resulted in an increase in average maximum and decrease in average minimum principal strain in the infraspinatus tendon. There is a significant difference in infraspinatus tendon strain between the intact and arthroscopically (but not transosseous) repaired supraspinatus tendons that increases with greater loads. Results suggest that at low loads neither supraspinatus tendon repair technique subjects the infraspinatus tendon to potentially detrimental loads; however, at high loads, transosseous repairs may be more advantageous over arthroscopic repairs for the health of the infraspinatus tendon. Results emphasize the importance of limiting loading of the repaired supraspinatus tendon and that at low loads, both repair techniques restore the interaction to the intact supraspinatus tendon case.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. March 2011, 133(3): 031003.
Published Online: February 4, 2011
... acquisition of kinematic variables, body segment parameters (BSPs), and approximation in the biomechanical models. The effect of uncertainty in the estimation of body segment parameters can be especially important in the analysis of movements with high acceleration. A sensitivity analysis was performed to...
Abstract
A common problem in the analyses of upper limb unfettered reaching movements is the estimation of joint torques using inverse dynamics. The inaccuracy in the estimation of joint torques can be caused by the inaccuracy in the acquisition of kinematic variables, body segment parameters (BSPs), and approximation in the biomechanical models. The effect of uncertainty in the estimation of body segment parameters can be especially important in the analysis of movements with high acceleration. A sensitivity analysis was performed to assess the relevance of different sources of inaccuracy in inverse dynamics analysis of a planar arm movement. Eight regression models and one water immersion method for the estimation of BSPs were used to quantify the influence of inertial models on the calculation of joint torques during numerical analysis of unfettered forward arm reaching movements. Thirteen subjects performed 72 forward planar reaches between two targets located on the horizontal plane and aligned with the median plane. Using a planar, double link model for the arm with a floating shoulder, we calculated the normalized joint torque peak and a normalized root mean square (rms) of torque at the shoulder and elbow joints. Statistical analyses quantified the influence of different BSP models on the kinetic variable variance for given uncertainty on the estimation of joint kinematics and biomechanical modeling errors. Our analysis revealed that the choice of BSP estimation method had a particular influence on the normalized rms of joint torques. Moreover, the normalization of kinetic variables to BSPs for a comparison among subjects showed that the interaction between the BSP estimation method and the subject specific somatotype and movement kinematics was a significant source of variance in the kinetic variables. The normalized joint torque peak and the normalized root mean square of joint torque represented valuable parameters to compare the effect of BSP estimation methods on the variance in the population of kinetic variables calculated across a group of subjects with different body types. We found that the variance of the arm segment parameter estimation had more influence on the calculated joint torques than the variance of the kinematics variables. This is due to the low moments of inertia of the upper limb, especially when compared with the leg. Therefore, the results of the inverse dynamics of arm movements are influenced by the choice of BSP estimation method to a greater extent than the results of gait analysis.
Journal Articles
Journal:
Journal of Biomechanical Engineering
Article Type: Research Papers
J Biomech Eng. January 2011, 133(1): 011006.
Published Online: December 23, 2010
...Nathan A. Netravali; Seungbum Koo; Nicholas J. Giori; Thomas P. Andriacchi The menisci play an important role in load distribution, load bearing, joint stability, lubrication, and proprioception. Partial meniscectomy has been shown to result in changes in the kinematics and kinetics at the knee...
Abstract
The menisci play an important role in load distribution, load bearing, joint stability, lubrication, and proprioception. Partial meniscectomy has been shown to result in changes in the kinematics and kinetics at the knee during gait that can lead to progressive meniscal degeneration. This study examined changes in the strains within the menisci associated with kinematic and kinetic changes during the gait cycle. The gait changes considered were a 5 deg shift toward external rotation of the tibia with respect to the femur and an increased medial-lateral load ratio representing an increased adduction moment. A finite element model of the knee was developed and tested using a cadaveric specimen. The cadaver was placed in positions representing heel-strike and midstance of the normal gait, and magnetic resonance images were taken. Comparisons of the model predictions to boundaries digitized from images acquired in the loaded states were within the errors produced by a 1 pixel shift of either meniscus. The finite element model predicted that an increased adduction moment caused increased strains of both the anterior and posterior horns of the medial meniscus. The lateral meniscus exhibited much lower strains and had minimal changes under the various loading conditions. The external tibial rotational change resulted in a 20% decrease in the strains in the posterior medial horn and increased strains in the anterior medial horn. The results of this study suggest that the shift toward external tibial rotation seen clinically after partial medial meniscectomy is not likely to cause subsequent degenerative medial meniscal damage, but the consequence of this kinematic shift on the pathogenesis of osteoarthritis following meniscectomy requires further consideration.