Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Journal citation
NARROW
Date
Availability
1-20 of 61
Rupture
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Accepted Manuscript
Article Type: Research-Article
J Biomech Eng.
Paper No: BIO-19-1361
Published Online: December 1, 2019
Abstract
We study the effects of surface tension and yield stress on mucus plug rupture. A three-dimensional simplified configuration is employed to simulate mucus plug rupture in a collapsed lung airway of the 10th generation. The Herschel-Bulkley model is used to take into account the non-Newtonian viscoplastic fluid properties of mucus. Results show that, the maximum wall shear stress remarkably changes right prior to the rupture of the mucus plug. The surface tension influences mainly the late stage of the rupture process when the plug deforms greatly and the curvature of the mucus--air interface becomes significant. High surface tension increases the wall shear stress and the time needed to rupture since it produces a resistance to the rupture, as well as strong stress and velocity gradients across the mucus--air interface. The yield stress effects are pronounced mainly at the beginning. High yield stress makes the plug take long time to yield and slows down the whole rupture process. When the effects induced by the surface tension and yield forces are comparable, dynamical quantities strongly depend on the ratio of the two forces. The pressure difference, the only driving in the study, contributes to wall shear stress much more than surface tension and yield stress. Wall shear stress is less sensitive to the variation in yield stress than that in surface tension. In general, wall shear stress can be effectively reduced by the smaller pressure difference and surface tension.
Journal Articles
Accepted Manuscript
Tejas Canchi, Sourav Patnaik, Hong N Nguyen, Eyk Ng, Sriram Narayanan, Satish C Muluk, Victor De Oliveira, Ender A. Finol
Article Type: Research-Article
J Biomech Eng.
Paper No: BIO-19-1054
Published Online: October 1, 2019
Abstract
In the present work we provide a quantitative assessment of the biomechanical and geometric features that characterize abdominal aortic aneurysm (AAA) models generated from 19 Asian and 19 Caucasian diameter-matched AAA patients. 3D models were used to compute peak wall stress, 99th percentile wall stress (99 th WS), and spatially averaged wall stress for each AAA. In addition, 51 global geometric indices were calculated, which quantify the wall thickness, shape, and curvature of each AAA. The indices were correlated to 99 th WS (the only biomechanical metric that exhibited significant association with geometric indices) using Spearman's correlation and subsequently with multivariate linear regression using backward elimination. For the Asian AAA group, 99 th WS was highly correlated (R 2 = 0.77) with tortuosity, intraluminal thrombus volume, and area averaged Gaussian curvature. Similarly, 99 th WS in the Caucasian AAA group was highly correlated (R 2 = 0.87) with maximum AAA diameter, distal neck diameter, diameter-height ratio, minimum wall thickness variance, mode of the wall thickness variance, and area averaged Gaussian curvature. Significant differences were found between the groups for ten geometric indices; however, no differences were found for any of their respective biomechanical attributes. Assuming maximum AAA diameter as the most predictive metric for wall stress was found to be imprecise: 24% and 28% accuracy for the Asian and Caucasian groups, respectively. This investigation reveals that geometric indices other than maximum AAA diameter can serve as predictors of wall stress, and potentially for assessment of aneurysm rupture risk, in the Asian and Caucasian AAA populations.
Journal Articles
Article Type: Technical Briefs
J Biomech Eng. November 2019, 141(11): 114501.
Paper No: BIO-17-1393
Published Online: July 30, 2019
Abstract
The objective of this study was to use image-based computational fluid dynamics (CFD) techniques to analyze the impact that multiple closely spaced intracranial aneurysm (IAs) of the supra-clinoid segment of the internal carotid artery (ICA) have on each other's hemodynamic characteristics. The vascular geometry of fifteen (15) subjects with 2 IAs was gathered using a 3D digital subtraction angiography clinical system. Two groups of computer models were created for each subject's vascular geometry: both IAs present (model A) and after removal of one IA (model B). Models were separated into two groups based on IA separation: tandem (one proximal and one distal) and adjacent (aneurysms directly opposite on a vessel). Simulations using a pulsatile velocity waveform were solved by a commercial CFD solver. Proximal IAs altered flow into distal IAs (5 of 7), increasing flow energy and spatial-temporally averaged wall shear stress (STA-WSS: 3–50% comparing models A to B) while decreasing flow stability within distal IAs. Thus, proximal IAs may “protect” a distal aneurysm from destructive remodeling due to flow stagnation. Among adjacent IAs, the presence of both IAs decreased each other's flow characteristics, lowering WSS (models A to B) and increasing flow stability: all changes statistically significant (p < 0.05). A negative relationship exists between the mean percent change in flow stability in relation to adjacent IA volume and ostium area. Closely spaced IAs impact hemodynamic alterations onto each other concerning flow energy, stressors, and stability. Understanding these alterations (especially after surgical repair of one IA) may help uncover risk factor(s) pertaining to the growth of (remaining) IAs.
Journal Articles
Article Type: Research-Article
J Biomech Eng. July 2019, 141(7): 071004.
Paper No: BIO-18-1532
Published Online: June 13, 2019
Abstract
The objective of the study is to use crack propagation simulation to study the rupture site characteristics in ruptured abdominal aortic aneurysms (AAA). In a study population of four ruptured AAA harvested whole from cadavers, the rupture lines were precisely documented. The wall properties such as thickness and material parameters were experimentally determined. Using subject-specific three-dimensional (3D) geometry and a finite elastic isotropic material model with subject-specific parameters, crack propagation simulations were conducted based on basic fracture mechanics principles to investigate if and how localized weak spots may have led to the rupture lines observed upon harvest of ruptured AAA. When an initial crack was imposed at the site of peak wall stress, the propagated path did not match the observed rupture line. This indicates that in this study population, the peak wall stress was unlikely to have caused the observed rupture. When cracks were initiated at random locations in the AAA along random orientations and for random initial lengths, the orientation of the resulting propagated rupture line was always longitudinal. This suggests that the AAA morphology predisposes the AAA to rupture longitudinally, which is consistent with observations. And finally, it was found that, in this study population, rupture may have initiated at short segments of less than 1 cm length that then propagated to the observed rupture lines. This finding provides some guidance for the spatial resolution (approx. 1 cm) of weak spots to investigate for in AAA during ex vivo experimental and in vivo elastography studies. The small study population and lack of a reliable failure model for AAA tissue make these findings preliminary.
Journal Articles
Mirunalini Thirugnanasambandam, Dan T. Simionescu, Patricia G. Escobar, Eugene Sprague, Beth Goins, Geoffrey D. Clarke, Hai-Chao Han, Krysta L. Amezcua, Oluwaseun R. Adeyinka, Craig J. Goergen, Ender Finol
Article Type: Technical Briefs
J Biomech Eng. August 2018, 140(8): 084502.
Paper No: BIO-17-1368
Published Online: June 15, 2018
Abstract
An abdominal aortic aneurysm (AAA) is a permanent localized expansion of the abdominal aorta with mortality rate of up to 90% after rupture. AAA growth is a process of vascular degeneration accompanied by a reduction in wall strength and an increase in inflammatory activity. It is unclear whether this process can be intervened to attenuate AAA growth, and hence, it is of great clinical interest to develop a technique that can stabilize the AAA. The objective of this work is to develop a protocol for future studies to evaluate the effects of drug-based therapies on the mechanics and inflammation in rodent models of AAA. The scope of the study is limited to the use of pentagalloyl glucose (PGG) for aneurysm treatment in the calcium chloride rat AAA model. Peak wall stress (PWS) and matrix metalloproteinase (MMP) activity, which are the biomechanical and biological markers of AAA growth and rupture, were evaluated over 4 weeks in untreated and treated (with PGG) groups. The AAA specimens were mechanically characterized by planar biaxial tensile testing and the data fitted to a five-parameter nonlinear, hyperelastic, anisotropic Holzapfel–Gasser–Ogden (HGO) material model, which was used to perform finite element analysis (FEA) to evaluate PWS. Our results demonstrated that there was a reduction in PWS between pre- and post-AAA induction FEA models in the treatment group compared to the untreated group using either animal-specific or average material properties. However, this reduction was not statistically significant. Conversely, there was a statistically significant reduction in MMP-activated fluorescent signal between pre- and post-AAA induction models in the treated group compared to the untreated group. Therefore, the primary contribution of this work is the quantification of the stabilizing effects of PGG using biomechanical and biological markers of AAA, thus indicating that PGG could be part of a new clinical treatment strategy that will require further investigation.
Journal Articles
Article Type: Research-Article
J Biomech Eng. August 2018, 140(8): 081002.
Paper No: BIO-17-1569
Published Online: May 24, 2018
Abstract
Repeated loading of ligamentous tissues during repetitive occupational and physical tasks even within physiological ranges of motion has been implicated in the development of pain and joint instability. The pathophysiological mechanisms of pain after repetitive joint loading are not understood. Within the cervical spine, excessive stretch of the facet joint and its capsular ligament has been implicated in the development of pain. Although a single facet joint distraction (FJD) at magnitudes simulating physiologic strains is insufficient to induce pain, it is unknown whether repeated stretching of the facet joint and ligament may produce pain. This study evaluated if repeated loading of the facet at physiologic nonpainful strains alters the capsular ligament's mechanical response and induces pain. Male rats underwent either two subthreshold facet joint distractions (STFJDs) or sham surgeries each separated by 2 days. Pain was measured before the procedure and for 7 days; capsular mechanics were measured during each distraction and under tension at tissue failure. Spinal glial activation was also assessed to probe potential pathophysiologic mechanisms responsible for pain. Capsular displacement significantly increased (p = 0.019) and capsular stiffness decreased (p = 0.008) during the second distraction compared to the first. Pain was also induced after the second distraction and was sustained at day 7 (p < 0.048). Repeated loading weakened the capsular ligament with lower vertebral displacement (p = 0.041) and peak force (p = 0.014) at tissue rupture. Spinal glial activation was also induced after repeated loading. Together, these mechanical, physiological, and neurological findings demonstrate that repeated loading of the facet joint even within physiologic ranges of motion can be sufficient to induce pain, spinal inflammation, and alter capsular mechanics similar to a more injurious loading exposure.
Journal Articles
Article Type: Research-Article
J Biomech Eng. December 2017, 139(12): 121002.
Paper No: BIO-16-1468
Published Online: September 28, 2017
Abstract
Anthropometric test devices (ATDs) such as the Hybrid III dummy have been widely used in automotive crash tests to evaluate the risks of injury at different body regions. In recent years, researchers have started using automotive ATDs to study the high-speed vertical loading response caused by underbody blast impacts. This study analyzed the Hybrid III dummy responses to short-duration, large magnitude vertical accelerations in a laboratory setup. Two unique test conditions were investigated using a horizontal sled system to simulate underbody blast loading conditions. The biomechanical responses in terms of pelvis acceleration, chest acceleration, lumbar spine force, head accelerations, and neck forces were measured. Subsequently, a series of finite element (FE) analyses were performed to simulate the physical tests. The correlation between the Hybrid III test and numerical model was evaluated using the correlation and analysis (cora) version 3.6.1. The score for the Wayne State University (WSU) FE model was 0.878 and 0.790 for loading conditions 1 and 2, respectively, in which 1.0 indicated a perfect correlation between the experiment and the simulated response. With repetitive vertical impacts, the Hybrid III dummy pelvis showed a significant increase in peak acceleration accompanied by a rupture of the pelvis foam and flesh. The revised WSU Hybrid III model indicated high stress concentrations at the same location, providing a possible explanation for the material failure in actual Hybrid III tests.
Journal Articles
Article Type: Research-Article
J Biomech Eng. August 2017, 139(8): 081006.
Paper No: BIO-16-1316
Published Online: June 16, 2017
Abstract
The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.
Journal Articles
Article Type: Technical Briefs
J Biomech Eng. May 2016, 138(5): 054503.
Paper No: BIO-15-1136
Published Online: April 1, 2016
Abstract
Abdominal aortic aneurysm (AAA) intervention and surveillance is currently based on maximum transverse diameter, even though it is recognized that this might not be the best strategy. About 10% of patients with small AAA transverse diameters, for whom intervention is not considered, still rupture; while patients with large AAA transverse diameters, for whom intervention would have been recommended, have stable aneurysms that do not rupture. While maximum transverse diameter is easy to measure and track in clinical practice, one of its main drawbacks is that it does not represent the whole AAA and rupture seldom occurs in the region of maximum transverse diameter. By following maximum transverse diameter alone clinicians are missing information on the shape change dynamics of the AAA, and clues that could lead to better patient care. We propose here a method to register AAA surfaces that were obtained from the same patient at different time points. Our registration method could be used to track the local changes of the patient-specific AAA. To achieve registration, our procedure uses a consistent parameterization of the AAA surfaces followed by strain relaxation. The main assumption of our procedure is that growth of the AAA occurs in such a way that surface strains are smoothly distributed, while regions of small and large surface growth can be differentiated. The proposed methodology has the potential to unravel different patterns of AAA growth that could be used to stratify patient risks.
Journal Articles
Article Type: Research-Article
J Biomech Eng. February 2016, 138(2): 021002.
Paper No: BIO-15-1545
Published Online: January 27, 2016
Abstract
The meniscus provides crucial knee function and damage to it leads to osteoarthritis of the articular cartilage. Accurate measurement of its mechanical properties is therefore important, but there is uncertainty about how the test procedure affects the results, and some key mechanical properties are reported using ad hoc criteria (modulus) or not reported at all (yield). This study quantifies the meniscus' stress–strain curve in circumferential and radial uniaxial tension. A fiber recruitment model was used to represent the toe region of the stress–strain curve, and new reproducible and objective procedures were implemented for identifying the yield point and measuring the elastic modulus. Patterns of strain heterogeneity were identified using strain field measurements. To resolve uncertainty regarding whether rupture location (i.e., midsubstance rupture versus at-grip rupture) influences the measured mechanical properties, types of rupture were classified in detail and compared. Dogbone (DB)-shaped specimens are often used to promote midsubstance rupture; to determine if this is effective, we compared DB and rectangle (R) specimens in both the radial and circumferential directions. In circumferential testing, we also compared expanded tab (ET) specimens under the hypothesis that this shape would more effectively secure the meniscus' curved fibers and thus produce a stiffer response. The fiber recruitment model produced excellent fits to the data. Full fiber recruitment occurred approximately at the yield point, strongly supporting the model's physical interpretation. The strain fields, especially shear and transverse strain, were extremely heterogeneous. The shear strain field was arranged in pronounced bands of alternating positive and negative strain in a pattern similar to the fascicle structure. The site and extent of failure showed great variation, but did not affect the measured mechanical properties. In circumferential tension, ET specimens underwent earlier and more rapid fiber recruitment, had less stretch at yield, and had greater elastic modulus and peak stress. No significant differences were observed between R and DB specimens in either circumferential or radial tension. Based on these results, ET specimens are recommended for circumferential tests and R specimens for radial tests. In addition to the data obtained, the procedural and modeling advances made in this study are a significant step forward for meniscus research and are applicable to other fibrous soft tissues.
Journal Articles
Philipp Berg, Christoph Roloff, Oliver Beuing, Samuel Voss, Shin-Ichiro Sugiyama, Nicolas Aristokleous, Andreas S. Anayiotos, Neil Ashton, Alistair Revell, Neil W. Bressloff, Alistair G. Brown, Bong Jae Chung, Juan R. Cebral, Gabriele Copelli, Wenyu Fu, Aike Qiao, Arjan J. Geers, Simona Hodis, Dan Dragomir-Daescu, Emily Nordahl, Yildirim Bora Suzen, Muhammad Owais Khan, Kristian Valen-Sendstad, Kenichi Kono, Prahlad G. Menon, Priti G. Albal, Otto Mierka, Raphael Münster, Hernán G. Morales, Odile Bonnefous, Jan Osman, Leonid Goubergrits, Jordi Pallares, Salvatore Cito, Alberto Passalacqua, Senol Piskin, Kerem Pekkan, Susana Ramalho, Nelson Marques, Stéphane Sanchi, Kristopher R. Schumacher, Jess Sturgeon, Helena Švihlová, Jaroslav Hron, Gabriel Usera, Mariana Mendina, Jianping Xiang, Hui Meng, David A. Steinman, Gábor Janiga
Article Type: Research-Article
J Biomech Eng. December 2015, 137(12): 121008.
Paper No: BIO-14-1543
Published Online: November 5, 2015
Abstract
With the increased availability of computational resources, the past decade has seen a rise in the use of computational fluid dynamics (CFD) for medical applications. There has been an increase in the application of CFD to attempt to predict the rupture of intracranial aneurysms, however, while many hemodynamic parameters can be obtained from these computations, to date, no consistent methodology for the prediction of the rupture has been identified. One particular challenge to CFD is that many factors contribute to its accuracy; the mesh resolution and spatial/temporal discretization can alone contribute to a variation in accuracy. This failure to identify the importance of these factors and identify a methodology for the prediction of ruptures has limited the acceptance of CFD among physicians for rupture prediction. The International CFD Rupture Challenge 2013 seeks to comment on the sensitivity of these various CFD assumptions to predict the rupture by undertaking a comparison of the rupture and blood-flow predictions from a wide range of independent participants utilizing a range of CFD approaches. Twenty-six groups from 15 countries took part in the challenge. Participants were provided with surface models of two intracranial aneurysms and asked to carry out the corresponding hemodynamics simulations, free to choose their own mesh, solver, and temporal discretization. They were requested to submit velocity and pressure predictions along the centerline and on specified planes. The first phase of the challenge, described in a separate paper, was aimed at predicting which of the two aneurysms had previously ruptured and where the rupture site was located. The second phase, described in this paper, aims to assess the variability of the solutions and the sensitivity to the modeling assumptions. Participants were free to choose boundary conditions in the first phase, whereas they were prescribed in the second phase but all other CFD modeling parameters were not prescribed. In order to compare the computational results of one representative group with experimental results, steady-flow measurements using particle image velocimetry (PIV) were carried out in a silicone model of one of the provided aneurysms. Approximately 80% of the participating groups generated similar results. Both velocity and pressure computations were in good agreement with each other for cycle-averaged and peak-systolic predictions. Most apparent “outliers” (results that stand out of the collective) were observed to have underestimated velocity levels compared to the majority of solutions, but nevertheless identified comparable flow structures. In only two cases, the results deviate by over 35% from the mean solution of all the participants. Results of steady CFD simulations of the representative group and PIV experiments were in good agreement. The study demonstrated that while a range of numerical schemes, mesh resolution, and solvers was used, similar flow predictions were observed in the majority of cases. To further validate the computational results, it is suggested that time-dependent measurements should be conducted in the future. However, it is recognized that this study does not include the biological aspects of the aneurysm, which needs to be considered to be able to more precisely identify the specific rupture risk of an intracranial aneurysm.
Journal Articles
Article Type: Research-Article
J Biomech Eng. September 2015, 137(9): 091008.
Paper No: BIO-14-1568
Published Online: July 22, 2015
Abstract
Abdominal aortic aneurysms (AAAs) evolve over time, and the vertebral column, which acts as an external barrier, affects their biomechanical properties. Mechanical interaction between AAAs and the spine is believed to alter the geometry, wall stress distribution, and blood flow, although the degree of this interaction may depend on AAAs specific configurations. In this study, we use a growth and remodeling (G&R) model, which is able to trace alterations of the geometry, thus allowing us to computationally investigate the effect of the spine for progression of the AAA. Medical image-based geometry of an aorta is constructed along with the spine surface, which is incorporated into the computational model as a cloud of points. The G&R simulation is initiated by local elastin degradation with different spatial distributions. The AAA–spine interaction is accounted for using a penalty method when the AAA surface meets the spine surface. The simulation results show that, while the radial growth of the AAA wall is prevented on the posterior side due to the spine acting as a constraint, the AAA expands faster on the anterior side, leading to higher curvature and asymmetry in the AAA configuration compared to the simulation excluding the spine. Accordingly, the AAA wall stress increases on the lateral, posterolateral, and the shoulder regions of the anterior side due to the AAA–spine contact. In addition, more collagen is deposited on the regions with a maximum diameter. We show that an image-based computational G&R model not only enhances the prediction of the geometry, wall stress, and strength distributions of AAAs but also provides a framework to account for the interactions between an enlarging AAA and the spine for a better rupture potential assessment and management of AAA patients.
Journal Articles
Article Type: Research-Article
J Biomech Eng. November 2014, 136(11): 111009.
Paper No: BIO-14-1158
Published Online: September 17, 2014
Abstract
Puncture testing has been applied in several studies for the mechanical characterization of human fetal membrane (FM) tissue, and significant knowledge has been gained from these investigations. When comparing results of mechanical testing (puncture, inflation, and uniaxial tension), we have observed discrepancies in the rupture sequence of FM tissue and significant differences in the deformation behavior. This study was undertaken to clarify these discrepancies. Puncture experiments on FM samples were performed to reproduce previous findings, and numerical simulations were carried out to rationalize particular aspects of membrane failure. The results demonstrate that both rupture sequence and resistance to deformation depend on the samples' fixation. Soft fixation leads to slippage in the clamping, which reduces mechanical loading of the amnion layer and results in chorion rupturing first. Conversely, the stiffer, stronger, and less extensible amnion layer fails first if tight fixation is used. The results provide a novel insight into the interpretation of ex vivo testing as well as in vivo membrane rupture.
Journal Articles
Article Type: Research-Article
J Biomech Eng. October 2013, 135(10): 101003.
Paper No: BIO-12-1640
Published Online: September 13, 2013
Abstract
Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data.
Journal Articles
Santanu Chandra, Samarth S. Raut, Anirban Jana, Robert W. Biederman, Mark Doyle, Satish C. Muluk, Ender A. Finol
Article Type: Research-Article
J Biomech Eng. August 2013, 135(8): 081001.
Paper No: BIO-12-1135
Published Online: June 12, 2013
Abstract
Rupture risk assessment of abdominal aortic aneurysms (AAA) by means of biomechanical analysis is a viable alternative to the traditional clinical practice of using a critical diameter for recommending elective repair. However, an accurate prediction of biomechanical parameters, such as mechanical stress, strain, and shear stress, is possible if the AAA models and boundary conditions are truly patient specific. In this work, we present a complete fluid-structure interaction (FSI) framework for patient-specific AAA passive mechanics assessment that utilizes individualized inflow and outflow boundary conditions. The purpose of the study is two-fold: (1) to develop a novel semiautomated methodology that derives velocity components from phase-contrast magnetic resonance images (PC-MRI) in the infrarenal aorta and successfully apply it as an inflow boundary condition for a patient-specific fully coupled FSI analysis and (2) to apply a one-way–coupled FSI analysis and test its efficiency compared to transient computational solid stress and fully coupled FSI analyses for the estimation of AAA biomechanical parameters. For a fully coupled FSI simulation, our results indicate that an inlet velocity profile modeled with three patient-specific velocity components and a velocity profile modeled with only the axial velocity component yield nearly identical maximum principal stress (σ1), maximum principal strain (ε1), and wall shear stress (WSS) distributions. An inlet Womersley velocity profile leads to a 5% difference in peak σ1, 3% in peak ε1, and 14% in peak WSS compared to the three-component inlet velocity profile in the fully coupled FSI analysis. The peak wall stress and strain were found to be in phase with the systolic inlet flow rate, therefore indicating the necessity to capture the patient-specific hemodynamics by means of FSI modeling. The proposed one-way–coupled FSI approach showed potential for reasonably accurate biomechanical assessment with less computational effort, leading to differences in peak σ1, ε1, and WSS of 14%, 4%, and 18%, respectively, compared to the axial component inlet velocity profile in the fully coupled FSI analysis. The transient computational solid stress approach yielded significantly higher differences in these parameters and is not recommended for accurate assessment of AAA wall passive mechanics. This work demonstrates the influence of the flow dynamics resulting from patient-specific inflow boundary conditions on AAA biomechanical assessment and describes methods to evaluate it through fully coupled and one-way–coupled fluid-structure interaction analysis.
Journal Articles
Article Type: Research-Article
J Biomech Eng. April 2013, 135(4): 041001.
Paper No: BIO-12-1169
Published Online: April 2, 2013
Abstract
The use of computational modeling to predict injury mechanisms and severity has recently been investigated, but few models report failure level ligament strains. The hypothesis of the study was that models built off neutral ankle experimental studies would generate the highest ligament strain at failure in the anterior deltoid ligament, comprised of the anterior tibiotalar ligament (ATiTL) and tibionavicular ligament (TiNL). For models built off everted ankle experimental studies the highest strain at failure would be developed in the anterior tibiofibular ligament (ATiFL). An additional objective of the study was to show that in these computational models ligament strain would be lower when modeling a partial versus complete ligament rupture experiment. To simulate a prior cadaver study in which six pairs of cadaver ankles underwent external rotation until gross failure, six specimen-specific models were built based on computed tomography (CT) scans from each specimen. The models were initially positioned with 20 deg dorsiflexion and either everted 20 deg or maintained at neutral to simulate the cadaver experiments. Then each model underwent dynamic external rotation up to the maximum angle at failure in the experiments, at which point the peak strains in the ligaments were calculated. Neutral ankle models predicted the average of highest strain in the ATiTL (29.1 ± 5.3%), correlating with the medial ankle sprains in the neutral cadaver experiments. Everted ankle models predicted the average of highest strain in the ATiFL (31.2 ± 4.3%) correlating with the high ankle sprains documented in everted experiments. Strains predicted for ligaments that suffered gross injuries were significantly higher than the strains in ligaments suffering only a partial tear. The correlation between strain and ligament damage demonstrates the potential for modeling to provide important information for the study of injury mechanisms and for aiding in treatment procedure.
Journal Articles
Article Type: Research-Article
J Biomech Eng. February 2013, 135(2): 021010.
Paper No: BIO-12-1491
Published Online: February 7, 2013
Abstract
AAA disease is a serious condition and a multidisciplinary approach including biomechanics is needed to better understand and more effectively treat this disease. A rupture risk assessment is central to the management of AAA patients, and biomechanical simulation is a powerful tool to assist clinical decisions. Central to such a simulation approach is a need for robust and physiologically relevant models. Vascular tissue senses and responds actively to changes in its mechanical environment, a crucial tissue property that might also improve the biomechanical AAA rupture risk assessment. Specifically, constitutive modeling should not only focus on the (passive) interaction of structural components within the vascular wall, but also how cells dynamically maintain such a structure. In this article, after specifying the objectives of an AAA rupture risk assessment, the histology and mechanical properties of AAA tissue, with emphasis on the wall, are reviewed. Then a histomechanical constitutive description of the AAA wall is introduced that specifically accounts for collagen turnover. A test case simulation clearly emphasizes the need for constitutive descriptions that remodels with respect to the mechanical loading state. Finally, remarks regarding modeling of realistic clinical problems and possible future trends conclude the article.
Journal Articles
Article Type: Research Papers
J Biomech Eng. May 2012, 134(5): 051003.
Published Online: May 25, 2012
Abstract
The presence of bacterial biofilms is detrimental in a wide range of healthcare situations especially wound healing. Physical debridement of biofilms is a method widely used to remove them. This study evaluates the use of microfluidic jet impingement to debride biofilms. In this case, a biofilm is treated as a saturated porous medium also having linear elastic properties. A numerical modeling approach is used to calculate the von Mises stress distribution within a porous medium under fluid-structure interaction (FSI) loading to determine the initial rupture of the biofilm structure. The segregated model first simulates the flow field to obtain the FSI interface loading along the fluid-solid interface and body force loading within the porous medium. A stress-strain model is consequently used to calculate the von Mises stress distribution to obtain the biofilm deformation. Under a vertical jet, 60% of the deformation of the porous medium can be accounted for by treating the medium as if it was an impermeable solid. However, the maximum deformation in the porous medium corresponds to the point of maximum shear stress which is a different position in the porous medium than that of the maximum normal stress in an impermeable solid. The study shows that a jet nozzle of 500 μm internal diameter (ID) with flow of Reynolds number (Re) of 200 can remove the majority of biofilm species.
Journal Articles
Article Type: Research Papers
J Biomech Eng. November 2011, 133(11): 111004.
Published Online: November 28, 2011
Abstract
A new experimental setup has been implemented to precisely measure the deformations of an entire model abdominal aortic aneurysm (AAA). This setup addresses a gap between the computational and experimental models of AAA that have aimed at improving the limited understanding of aneurysm development and rupture. The experimental validation of the deformations from computational approaches has been limited by a lack of consideration of the large and varied deformations that AAAs undergo in response to physiologic flow and pressure. To address the issue of experimentally validating these calculated deformations, a stereoscopic imaging system utilizing two cameras was constructed to measure model aneurysm displacement in response to pressurization. The three model shapes, consisting of a healthy aorta, an AAA with bifurcation, and an AAA without bifurcation, were also evaluated with computational solid mechanical modeling using finite elements to assess the impact of differences between material properties and for comparison against the experimental inflations. The device demonstrated adequate accuracy (surface points were located to within 0.07 mm) for capturing local variation while allowing the full length of the aneurysm sac to be observed at once. The experimental model AAA demonstrated realistic aneurysm behavior by having cyclic strains consistent with reported clinical observations between pressures 80 and 120 mm Hg. These strains are 1–2%, and the local spatial variations in experimental strain were less than predicted by the computational models. The three different models demonstrated that the asymmetric bifurcation creates displacement differences but not cyclic strain differences within the aneurysm sac. The technique and device captured regional variations of strain that are unobservable with diameter measures alone. It also allowed the calculation of local strain and removed rigid body motion effects on the strain calculation. The results of the computations show that an asymmetric aortic bifurcation created displacement differences but not cyclic strain differences within the aneurysm sac.
Journal Articles
Article Type: Technical Briefs
J Biomech Eng. October 2011, 133(10): 104501.
Published Online: November 3, 2011
Abstract
The purpose of this study is to evaluate the potential correlation between peak wall stress (PWS) and abdominal aortic aneurysm (AAA) morphology and how it relates to aneurysm rupture potential. Using in-house segmentation and meshing software, six 3-dimensional (3D) AAA models from a single patient followed for 28 months were generated for finite element analysis. For the AAA wall, both isotropic and anisotropic materials were used, while an isotropic material was used for the intraluminal thrombus (ILT). These models were also used to calculate 36 geometric indices characteristic of the aneurysm morphology. Using least squares regression, seven significant geometric features (p < 0.05) were found to characterize the AAA morphology during the surveillance period. By means of nonlinear regression, PWS estimated with the anisotropic material was found to be highly correlated with three of these features: maximum diameter (r = 0.992, p = 0.002), sac volume (r = 0.989, p = 0.003) and diameter to diameter ratio (r = 0.947, p = 0.033). The correlation of wall mechanics with geometry is nonlinear and reveals that PWS does not increase concomitantly with aneurysm diameter. This suggests that a quantitative characterization of AAA morphology may be advantageous in assessing rupture risk.