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A Recruitment Model of Tendon
Viscoelasticity That Incorporates
Fibril Creep and Explains
Strain-Dependent Relaxation
Soft tissues exhibit complex viscoelastic behavior, including strain-rate dependence, hys-
teresis, and strain-dependent relaxation. In this paper, a model for soft tissue viscoelas-
ticity is developed that captures all of these features and is based upon collagen
recruitment, whereby fibrils contribute to tissue stiffness only when taut. We build upon
existing recruitment models by additionally accounting for fibril creep and by explicitly
modeling the contribution of the matrix to the overall tissue viscoelasticity. The fibrils
and matrix are modeled as linear viscoelastic and each fibril has an associated critical
strain (corresponding to its length) at which it becomes taut. The model is used to fit
relaxation tests on three rat tail tendon fascicles and predict their response to cyclic
loading. It is shown that all of these mechanical tests can be reproduced accurately with
a single set of constitutive parameters, the only difference between each fascicle being
the distribution of their fibril crimp lengths. By accounting for fibril creep, we are able to
predict how the fibril length distribution of a fascicle changes over time under a given
deformation. Furthermore, the phenomenon of strain-dependent relaxation is explained
as arising from the competition between the fibril and matrix relaxation functions.
[DOI: 10.1115/1.4045662]

1 Introduction

Soft tissues that connect, support, or surround bones and organs
are abundant. Such tissues are generally inhomogeneous and have
multiple phases, which provide a challenge to those attempting to
understand their mechanical behavior. The macroscopic response
of a tissue to a force depends on the constitutive behavior of each
of its individual phases, as well as the manner in which these
phases interact.

Connective tissues are commonly fibrous, being composed of a
compliant material within which a number of stiffer fibers reside.
Tendons, for example, are composed of collagen fibrils embedded
in a matrix that consists largely of proteoglycans and elastin [1].
The specific volume fraction, distribution, and arrangement of the
fibers depend on the tissue type and often vary throughout the
tissue.

In this paper, we develop a microstructural model of the macro-
scopic viscoelastic behavior of tendon or ligament fascicles.
Although tendons and ligaments have different functions (tendons
connect bone to muscle, whereas ligaments connect bone to
bone), they are composed of the same fundamental components.
Their main subunit is the fascicle, which consists of crimped col-
lagen fibrils (see Fig. 1) that have a diameter of 50–500 nm [2].
Fibrils are in turn composed of microfibrils that are made from a
regular arrangement of collagen molecules, but we shall not con-
sider the mechanics of any lengthscales below the fibril level in
this paper. The constitutive behavior of individual collagen fibrils
has been reported to be linearly viscoelastic [3–5].

The goal of understanding the constitutive behavior of soft tis-
sues, and more specifically here, tendons, and ligaments, is of

fundamental importance. One area that could benefit from such an
understanding is tendon reconstruction surgery. A replaced or
repaired tendon must possess similar mechanical properties to the
original tissue in order to carry out its role effectively [6]. There-
fore, to design effective prosthetic tendons, we must have knowl-
edge of the relationship between tissue microstructure and
mechanical behavior.

Tendon and ligament fascicles in general exhibit strong nonlin-
ear viscoelasticity with time-dependent and load-history depend-
ent mechanical behavior even under small strains. The fact that
the constitutive response of tendon and ligament is nonlinear and
viscoelastic was established some time ago. For example, Rigby
et al. measured the properties of rat tail tendons [7]. By viewing
fascicles with polarized light, they attributed the nonlinearity to
the successive straightening of crimped collagen fibrils.

A simple way to approximate the constitutive behavior of soft
tissue is to ignore viscous effects and consider a purely elastic
model. Many elastic models have been proposed that can be cate-
gorized according to their phenomenological or microstructural

Fig. 1 The levels of the tendon hierarchy considered in this
study are the fibril and fascicle levels
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basis. The former approach often utilizes nonlinear elasticity to
model soft tissues; Fung [8], for example, modeled rabbit mesen-
tery constitutive behavior using an exponential function, and more
recently, Holzapfel et al. [9] developed a strain energy function
for the modeling of arteries that similarly utilizes an exponential
function.

Microstructural models are appealing in the sense that the
actual mechanics of each subunit can be modeled and upscaled;
however, it is often unclear exactly how such microstructural ele-
ments behave and interact as their properties need to be deter-
mined experimentally, which can be a huge challenge in itself. A
popular elastic model is that of Kastelic et al. [10], which intro-
duced a mechanism to include the notion of sequential straighten-
ing and loading (SSL) to describe the uncrimping of fibrils
referred to above. Prior to this, Lanir [11] had proposed a model
which had some similarities, but which dealt with the uncrimping
in a different way. He assumed that the crimp is induced and sus-
tained by filaments that are attached to the fibril at random inter-
vals; however, although interesting, this approach has not proved
to be as popular. Ault and Hoffman [12,13] adapted microme-
chanical models originally devised for fiber reinforced composites
to tendon, and Shearer [14] extended the SSL model to derive a
new strain energy function that is valid for general deformations
within a nonlinear elastic framework, and which is still based on
tendon and ligament microstructure. This model was shown to fit
experimental data accurately.

Some elastic models assume the fibrils are helically arranged:
Beskos and Jenkins [15] considered tendons whose fibrils were
assumed to be helical and inextensible, which led to their model
having infinite stiffness at full extension. Freed and Doehring [16]
and Grytz and Meschke [17] extended that work by modeling the
fibrils as helical springs and Shearer [18] considered fibrils that
are helical and crimped. Other authors, such as Hurschler et al.
[19], assumed a statistical distribution of fibril alignments in order
to determine their average stress–strain properties in a given
direction.

A number of models of soft tissue viscoelasticity have also
been proposed. Linear viscoelastic models were used early on
[20] and have the advantage of being easy to implement mathe-
matically. Viidik [21] later used an assembly of springs, dashpots,
and slack elements to model the load-deformation curve of
tendon. In reality, however, tendon viscoelastic behavior is
nonlinear. Experiments show that rates of relaxation and creep are
dependent on the strain or stress level that is being imposed
[22,23]. The latter rules out the possibility of employing quasi-
linear viscoelasticity (QLV) (which is based on the work of Fung
[24] and has recently been reinterpreted by De Pascalis et al. [25],
extended to the case of transverse isotropy by Balbi et al. [26] and
employed for modeling viscoelastic inflation problems by De Pas-
calis et al. [27]) with a single scalar relaxation function. QLV
assumes that the viscous relaxation rate is independent of the
instantaneous local strain and is a special case of the more general
constitutive model developed by Pipkin and Rogers [28]. One of
the earliest examples of using QLV to model ligaments was by
Woo et al. [29], who showed that QLV can achieve good agree-
ment with individual experiments, but they did not consider
strain-dependent relaxation.

Although QLV with a single scalar relaxation function gives
different stress–strain curves for different strain rates, the fact that
the relaxation function is independent of deformation means that
an imposed step-function in strain leads to the same rate of relax-
ation regardless of the magnitude of the imposed strain. Such
models have been fitted successfully to a number of datasets,
although frequently these only incorporate data from experiments
at a single strain level or strain rate [30]. On the other hand, DeF-
rate and Li [31] illustrated that QLV with a Mooney–Rivlin elastic
strain energy function can fit data at a range of strain levels with
relatively little error. Pioletti and Rakotomanana [32] quantified
the ability of a time/strain separable model (such as QLV) to fit
data over a range of tendon and ligament types and concluded that

QLV was valid below certain specified strain levels that depend
on the tissue type. Limbert and Middleton developed a finite strain
viscoelastic constitutive law in which the elastic and viscous
potentials were decoupled and used it to model human anterior
cruciate [33] and posterior cruciate [34] ligaments. Johnson et al.
[35] developed a finite strain phenomenological viscoelastic
model for tendons and ligaments. Decreamer et al. [36] developed
a microstructural viscoelastic model for the macroscopic behavior
of soft tissue but the upscaling technique gave rise to QLV behav-
ior. Other relevant papers include [37–41], which are discussed in
the context of this work in Sec. 4. For further references, we refer
the reader to the reviews of tendon modeling by Reese and Weiss
[42] and Thompson et al. [43].

An issue often raised with phenomenological models is that
their parameters are not necessarily physical, whereas microstruc-
tural models often suffer from having too many parameters. The
aim of this paper is to develop a microstructural model that relies
on only a small number of parameters, all of which have a direct
physical interpretation. Lanir [44] developed two models based on
this principle: a high-density crosslink model and a low density
crosslink (LDCL) model. In the high-density crosslink model, it
was assumed that each viscoelastic collagen fibril is attached to a
purely elastic elastin fiber, whereas in the LDCL model it was
assumed that each viscoelastic collagen fibril moved independ-
ently through the extracollagenous matrix, which was assumed to
be purely elastic. Sverdlik and Lanir [45] extended this model to
three dimensions, using QLV for a single fibril and also incorpo-
rated the effects of preconditioning, and Raz and Lanir [46] fur-
ther developed the model to eliminate the possibility of negative
stresses in the tendon being predicted upon unloading. This
approach predicts the results of certain experiments well, but does
not predict strain-dependent relaxation and cannot be used to track
the fibril length distribution in a tissue over time. In this paper, we
use a model similar to the LDCL model and the model developed
by Raz and Lanir, but here we also model the matrix as visco-
elastic and use a more physically realistic method of monitoring
the stress and strain in each collagen fibril, which we shall
describe in detail in Sec. 2.3, by accounting for fibril creep. Due
to the multiscale nature of this model, it is able to account for the
stress relaxation that has been observed to take place at both the
fibril and fiber levels [47,48]. The inclusion of the matrix phase
gives rise to strain-dependent relaxation, and the inclusion of fibril
creep allows us to predict the evolution of a fascicle’s fibril length
distribution over time for a given imposed fascicle strain.

The maximum level of strain induced in a tendon is relatively
small (usually in the range 3–10%) and therefore, as a first
approximation, a small strain linear model for its individual con-
stituent phases is employed. By using a small strain model, we are
implicitly neglecting Oðe2Þ terms, where e is the imposed strain,
which would lead to a worst-case relative error of O(e) (i.e., 10%
relative error at 10% applied strain), although as discussed later,
since most fibrils within a tendon experience a strain lower than
the macroscale strain, the actual relative error would be lower
than this for any realistic initial fibril length distribution. During
deformation, the fibrils interact with each other and the matrix as
a result of their relative sliding [49]. It is assumed that this interac-
tion induces an effective viscosity that results in the viscoelastic
constitutive behavior of each component of the model. The struc-
ture of the paper is as follows. In Sec. 2, the model is introduced
and the constitutive behaviors of the individual components are
described, with particular attention being paid to their viscoelas-
ticity. We then describe how the overall response of a fascicle is
determined and consider two types of deformation: first, an incre-
mental relaxation test and second, a cycle test. In Sec. 3, we
describe experiments that were carried out to test the model and
show that a good fit for both deformation types can be achieved
with a single set of realistic parameter values for each fascicle.
The fibril crimp distribution parameters of each fascicle are pre-
dicted by fitting them to the relaxation data, and then these param-
eters are used to predict the response to cyclic loading. We then
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demonstrate that the model is able to predict the time-evolution of
the fibril length distribution for a given fascicle under cyclic load-
ing. Finally, we show that the model predicts strain-dependent
relaxation and gives a microstructrual explanation for the origin
of this phenomenon. A discussion and conclusions are provided in
Sec. 4.

2 The model

2.1 Configuration and Parameters. We model the fascicle
as a two-phase inhomogeneous medium consisting of a visco-
elastic extracollagenous matrix phase and a large number of
viscoelastic fibrils, each of which is initially crimped in the rest
state of the fascicle. Our approach is based on the SSL model
[10], the LDCL model described by Lanir [44], and the model of
Raz and Lanir [46], in which the macroscopic response of a fasci-
cle is due to the micromechanical behavior of the individual fibrils
within it, which have varying lengths that are accommodated
within the length of the fascicle via their crimp. It is assumed that
the fibrils are coaligned with the fascicle and that they do not
rotate. As the fascicle is stretched, the shortest fibrils are the first
to become taut and start contributing to its stiffness. As the
stretching continues, more fibrils straighten, and the stiffness of
the fascicle increases, accounting for its exponential-shaped
stress–strain curve. In our model, we additionally take into
account the contribution to the macroscopic stress of the matrix
phase. The fibrils are assumed to reside within the matrix and it is
assumed that their interactions with each other and with the matrix
cause the effective viscosity in each phase. We write the total vol-
ume fraction of (crimped and uncrimped) fibrils as / so that the
volume fraction of the matrix phase is 1� /. In addition to the
fibril volume fraction, we also need to know the relaxation behav-
ior of the fibrils and the matrix, which shall be formally defined in
terms of their relaxation functions later. The final input to the
model is the distribution of fibril crimp lengths.

We model both the fibrils and the matrix as linear viscoelastic.
We note that, as discussed above, linear viscoelasticity is inappropri-
ate to model the averaged properties of tendon fascicles; however,
since our model assumes a distribution of different fibril lengths
within the fascicle, several nonlinear viscoelastic features arise as a
result of the averaged behavior of these individual subunits.

In the following, we define the fibril and matrix stress and strain
as rf ; ef and rm; em, respectively, which are scalars rather than
tensors since this is a one-dimensional model. We denote the
imposed macroscopic (fascicle) strain as e and the resulting mac-
roscopic (fascicle) stress as r. We determine the latter from what
happens on the microscale. In other words, we formulate expres-
sions relating the macroscopic stress to the fibril and matrix
stresses at each point in time t. Note that the macroscopic strain
e(t) is imposed for all time.

2.2 Matrix Response. Since it is the simpler of the two
phases, we begin by considering the response of the extracollage-
nous matrix to an applied fascicle load. We assume that the matrix
strain is equal to the applied fascicle strain

emðtÞ ¼ eðtÞ (1)

and we model the matrix as a linear viscoelastic material, so that
we have

rm tð Þ ¼
ðt

�1
Em t� sð Þ dem

ds
ds (2)

¼ Emð0ÞemðtÞ þ
ðt

0

Em
0ðt� sÞemðsÞds (3)

where EmðtÞ is the matrix relaxation function and 0 represents dif-
ferentiation with respect to the argument. The form (3), which is

obtained from Eq. (2) upon using integration by parts, assumes
the deformation begins at t¼ 0 and is valid for all t � 0. We shall
choose EmðtÞ to take the form of a one-term Prony series

EmðtÞ ¼ Em
1 þ ðEm

0 � Em
1Þe�t=sm

r (4)

where Em
0 and Em

1 can be identified as the instantaneous and long-
time Young’s moduli of the matrix, respectively, and sm

r is its
relaxation time.

2.3 Single Fibril Response. Next, we consider the response
of a single fibril to an applied fascicle strain. The length of this
fibril when the fascicle is in its undeformed state shall be denoted
‘0 and the associated undeformed fascicle length will be denoted
L0 (<‘0), as depicted in Fig. 2. As the fascicle is stretched, the
fibril length will change as a function of time, so that we can write
the fascicle length at time t as LðtÞ ¼ L0 þ DLðtÞ, and the corre-
sponding fibril length as ‘ðtÞ ¼ ‘0 þ D‘ðtÞ. The strains experi-
enced by the fascicle and the fibril at time t can be defined as

e tð Þ ¼ L tð Þ � L0

L0

; ef tð Þ ¼ ‘ tð Þ � ‘0

‘0

(5)

respectively. Until taut, the fibril is passive and does not take up
any stress; the only effect of the imposed displacement is to
straighten out its crimp. At some time t¼ tA, however, the fibril
will fully straighten, at which point we have LðtAÞ ¼ ‘0. The strain
in the fascicle at this time is

e tAð Þ ¼ ec ¼
‘0 � L0

L0

(6)

We shall call this strain the critical strain, which we note is
dependent on the length ‘0 and so is unique to each individual
fibril. We assume that the fibril has no resistance to compression
along its longitudinal axis. If the fascicle is unloaded, the fibril
will slacken as soon as rf ¼ 0 and therefore will never experience
any negative stress. Due to viscoelastic memory effects, the criti-
cal fascicle strain at which straightening occurs changes on each
subsequent reload.

From the moment that the fibril is first loaded until it slackens,
we have ‘ðtÞ ¼ LðtÞ and so we can write the strain in the taut fibril
as

et
f tð Þ ¼ L tð Þ � ‘0

‘0

¼ L0

‘0

L tð Þ � L0

L0

� ‘0 � L0

L0

� �

¼ 1

1þ ec
e tð Þ � ecð Þ (7)

where the superscript t is used to emphasize that the fibril is taut.
As with the extracollagenous matrix, the fibril will be modeled as
linear viscoelastic with relaxation function E(t), which we shall
choose to take the form of a two-term Prony series, which has
been shown to give a good fit to the relaxation behavior of indi-
vidual collagen fibrils [3,5],

Fig. 2 Schematic illustration of a single crimped fibril of length
‘0 within a fascicle of length L0
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EðtÞ ¼ E1 þ E1e�t=s1
r þ E2e�t=s2

r (8)

in which E1, E1, and E2 are relaxation moduli (E1 is the long-
time fibril Young’s modulus and E0 ¼ E1 þ E1 þ E2 is the
instantaneous fibril Young’s modulus) and s1

r and s2
r are relaxation

times associated with the different relaxation time-scales, respec-
tively. The stress in the taut fibril, therefore, is given by

rt
f ðtÞ ¼ Eð0Þet

f ðtÞ þ
ðt

0

E0ðt� sÞef ðsÞds (9)

We note that the integral in this equation is over the entire strain
history (assuming that the first fascicle deformation begins at
t¼ 0), not just over those times when the fibril is taut. This point
is important for subsequent loadings.

If the fascicle is unloaded to the point that the fibril slackens, it
will be important to monitor the strain within that fibril as it
creeps as a function of time. To do this, we can invert the constitu-
tive expression (9) to obtain

ef ðtÞ ¼ Jð0Þrf ðtÞ þ
ðt

0

J0ðt� sÞrf ðsÞds (10)

where J(t) is the fibril creep function, taking the form

JðtÞ ¼ J0 þ J1e�t=s1
c þ J2e�t=s2

c (11)

where here, J0, J1, and J2 are creep moduli and s1
c and s2

c are creep
times. The viscoelastic creep moduli and creep times can be
expressed explicitly in terms of the relaxation moduli and times
(see Appendix).

The strain in the slack fibril, therefore, is given by

es
f ðtÞ ¼

ðt

0

J0ðt� sÞrf ðsÞds (12)

where we have used the fact that rf ðtÞ ¼ 0 while the fibril is slack
and note that the integral is over the entire stress history. The
superscript s emphasizes that the fibril is slack.

One must be aware of what is being imposed and what must be
derived in this model. While taut, the fibril strain is imposed
according to Eq. (7) and its stress must be derived from Eq. (9).
This remains the case until the fibril stress reaches zero (as a result
of reducing the fascicle strain), at which point the fibril slackens.
After this point, the condition of zero fibril stress (rf ¼ 0) is
imposed and its strain must be determined from Eq. (12). This

will then remain the case until the fibril is reloaded to the point
that it once again straightens out. At this point, the fibril strain is
once again imposed and the fibril stress derived from Eq. (9). This
is illustrated in Sec. 2.6 where we consider a cycle test consisting
of two loading and unloading cycles.

At t¼ 0, the fibril strain and stress are taken to be zero:
ef ð0Þ ¼ 0; rf ð0Þ ¼ 0. For any subsequent time t, the fibril strain
and stress are derived algorithmically via the flowchart in Fig. 3.
This figure may be compared with Fig. 4, which shows the flow-
chart that would be used to derive the fibril stress and strain in the
LDCL model derived by Lanir [44]. The functions in this flow-
chart are defined as follows:

eL
f tð Þ ¼ e tð Þ � ec; rL

f ¼
ðt

0

GL t� sð ÞH eL
f sð Þ

� � de sð Þ
ds

ds (13)

where GLðtÞ is the relaxation function associated with the LDCL
model, and Hð�Þ is the unit step function. We note that Lanir cor-
rectly derived the fibril strain given by Eq. (7), but argued that this
could be approximated by the expression in Eq. (13) since ec was
assumed to be small. We also note that the LDCL model was
derived in terms of forces, rather than stresses; however, since
stress is simply force per unit area, the second expression in
Eq. (13) is equivalent to the force–strain relationship of the LDCL
model.

Fig. 3 Flowchart to define fibril strain and stress at time t, where et
f (t) is defined in Eq. (7), rt

f (t) in Eq. (9) and es
f (t) in

Eq. (12)

Fig. 4 Flowchart to define fibril strain and stress at time t
using the LDCL model derived by Lanir [44], or the model devel-
oped by Raz and Lanir [46], where eL

f (t) and rL
f (t) are defined in

Eq. (13)
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The flowchart in Fig. 4 can also be used to derive the fibril
stress and strain in the model derived by Raz and Lanir [46], by
instead using the following expressions:

eL
f tð Þ ¼ e tð Þ � ec

1þ 2ec
; rL

f ¼
ðt

0

GL t� sð Þ
dre

f

deL
f

deL
f sð Þ
ds

ds (14)

where re
f is the so-called “immediate” (or “elastic”) stress

response, given by

re
f ¼

AeL
f eL

f � 0

0 otherwise

(
(15)

where A is the elastic coefficient of the fibrils. The factor of 2 in
the equation for eL

f is due to the fact that Raz and Lanir used finite
Lagrangian strains rather than infinitesimal strains in their model.

By comparing these two flowcharts, the difference between the
current model and the LDCL and Raz and Lanir models becomes
clear. In the model described in this paper, the fibril strain is only
imposed while the fibril is taut and the fibril creeps when it is
unloaded, whereas in the LDCL and Raz and Lanir models, the
fibril strain is imposed for all time and creep is unaccounted for.
This can lead to negative fibril stresses in both the LDCL and the
Raz and Lanir models when cyclic loading is considered.

2.4 Total Fascicle Response. Once we know the stresses in
the matrix and in a fibril that tautens at critical fascicle strain ec, it
is simple to obtain the homogenized response of a fascicle con-
taining fibrils with a distribution of crimp by volume averaging.
The total fascicle stress is equal to the average of the stresses in
the fibrils and matrix in proportion to their volume fractions; i.e.,
ð1� /Þ times the matrix stress plus / times the average fibril
stress, where / is the fibril volume fraction. Since each fibril has
its own associated critical strain, the average fibril stress is deter-
mined by integrating over the individual fibril stresses multiplied
by a critical strain distribution function. Considering a unit vol-
ume of fascicle we have

rðtÞ ¼ ð1� /ÞrmðtÞ þ /
ð1

0

pðecÞrf ðeðtÞ; ecÞdec; t 2 ½0;1Þ

(16)

where pðecÞ is the initial distribution of critical strains and the
notation rf ðeðtÞ; ecÞ is used to emphasize the fact that the stress in
each individual fibril is dependent on both the imposed fascicle
strain, e(t), and the critical fascicle strain, ec, at which that fibril
first becomes taut.

We note that, in the model proposed here, any continuous func-
tion may be chosen for the imposed fascicle strain, provided it sat-
isfies eð0Þ ¼ 0. Equation (16) provides a complete description of
the model for any deformation, but the main complexity in its
implementation arises in calculating the fibril stress rf according
to the flowchart in Fig. 3. The specific form of the deformation
being considered determines how challenging it is to calculate rf;
therefore, to illustrate the implementation of the model, we con-
sider two tests: a relaxation test and a cycle test.

2.5 Relaxation Test. The first example that illustrates the
model is a relaxation test in which the fascicle strain is rapidly
ratcheted up in several discrete steps with a long period of con-
stant strain in between each step, as depicted in Fig. 5(a). In
Fig. 5(b), the strain in a fibril with associated critical strain ec > 0
is displayed. The critical time tA at which the fibril first completely
straightens is labeled. In Fig. 5(c), the corresponding fibril stress
is shown. Since the fascicle is not unloaded in this problem, the
fibril strain is 0 for t � tA and is defined by Eq. (7) for t � tA and
the fibril stress is determined by Eq. (9) for all t � 0. The matrix
strain and stress are defined by Eqs. (1) and (3), respectively, for

all t � 0. The resulting fascicle stress (16) will be plotted and
compared with experimental data in Sec. 3.2.

2.6 Cycle Test. The second example is a cycle test, as
depicted schematically in Fig. 6. Figure 6(a) illustrates the
imposed fascicle strain, and Figs. 6(b) and 6(c) show the corre-
sponding strain and stress, respectively, in a single fibril of length
‘0 > L0. We note that this test is more challenging to model than
the relaxation test due to the unloading that occurs between tB and
tD and tB0 and tD0 . The matrix strain and stress are once again
defined by Eqs. (1) and (3), respectively, for all t � 0; however, to
calculate the fibril strain and stress, we must consider each stage
of the cycle test separately as we now discuss.

2.6.1 Fibril Response—First Load. The response from t¼ 0
through t¼ tA to the maximum strain eðtBÞ is due to the initial
loading, a single fibril only starts to take up stress at time tA when
it has fully straightened. At this point, eðtAÞ ¼ ec, but ef ðtAÞ ¼ 0.
We see in Fig. 6(b) that on this initial load curve

ef tð Þ ¼ e tð Þ � ec

1þ ec
H e tð Þ � ecð Þ (17)

where the unit step function ensures that the strain only begins to
increase once the critical strain is reached and rf begins to
increase after t¼ tA. Along this first load curve, the fibril stress is
therefore calculated using Eq. (9) in the form

rf ðef Þ ¼
0 t 2 ½0; tA�

Eð0Þef ðtÞ þ
ðt

0

E0ðt� sÞef ðsÞds t 2 ½tA; tB�

8><
>: (18)

although it is more useful to use the expression (17) and write

Fig. 5 Schematic depiction of relaxation test on a fascicle of
length L0, showing: (a) the imposed fascicle strain, (b) the cor-
responding strain in a fibril of length ‘0 > L0, and (c) the corre-
sponding fibril stress. The point tA is the time at which the fibril
first becomes taught, so that L(tA) ¼ ‘0.

Journal of Biomechanical Engineering JULY 2020, Vol. 142 / 071003-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/biom

echanical/article-pdf/142/7/071003/6887389/bio_142_07_071003.pdf by guest on 25 April 2024



rf e tð Þ; ecð Þ ¼

0 t 2 0; tA½ �

E 0ð Þ e tð Þ � ec

1þ ec

þ
ðt

tA

E0 t� sð Þ e sð Þ � ec

1þ ec
ds t 2 tA; tB½ �

8>>>>><
>>>>>:

(19)

Since ec and e(t) are known, the fibril stress is fully specified in
any fibril up to t¼ tB.

2.6.2 Fibril Response—First Unload. Once the maximum
strain is achieved at t¼ tB, the macroscopic strain is then reduced
at a specified strain rate back to zero. Initially, the fibril strain will
continue to be defined by Eq. (7); however, at some time t¼ tC,
critically, the fibril stress becomes zero. We will discuss this
shortly, but first we state, therefore, that the range of times for
which (19) applies is extended so that

rf e tð Þ; ecð Þ ¼

0 t 2 0; tA½ �

E 0ð Þ e tð Þ � ec

1þ ec

þ
ðt

tA

E0 t� sð Þ e sð Þ � ec

1þ ec
ds t 2 tA; tC½ �

8>>>>><
>>>>>:

(20)

Along the first part of the unload curve (from t¼ tB to t¼ tC), the
fibril stress will not be the same as the stress for the corresponding
stretch ef on the load curve due to stress relaxation and the mem-
ory effect. Its qualitative behavior in this first unloading curve is
illustrated in Fig. 6(c). As a result of this effect, for each fibril, at
some time t¼ tC the fibril stress will become zero. As previously
discussed, our assumption is that the fibrils are unable to take up
compressive stress and therefore, at this point the fibril will
slacken, maintaining zero stress within the fibril, and the crimp
will begin to reappear, so that as time progresses we are required
to determine the fibril strain from the zero stress condition at time

t. In other words, after tC (up until some, as yet unspecified, time,
t0A say) we must use (10) to determine the time evolution of the
strain as a function of the stress, i.e.,

ef ðtÞ ¼
ðtC

tA

J0ðt� sÞrf ðsÞds; t 2 ½tC; tA0 � (21)

while imposing zero stress

rf ðeðtÞ; ecÞ ¼ 0; t 2 ½tC; tA0 � (22)

The upper limit of integration in Eq. (21) is tC since the fibril
stress is zero after this time, but the fibril strain evolves in time, of
course, due to the time dependence of the creep function in the
integrand. This expression for the fibril strain is valid until some
time t ¼ tA0 as depicted on Fig. 6(a), as we will discuss shortly.

While the fibril stress is zero on the unload curve, the macro-
scopic strain e(t) is itself being reduced back to zero, i.e., to t¼ tD
on the curve in 6(a). If we maintained e(t)¼ 0 for all t � tD, the
fibril strain ef ðtÞ in Eq. (21) would also reduce back to zero as
t!1; however, we choose instead to immediately reload as
indicated in the figure, so that the macroscopic strain begins to
increase once again. At this time, the fibril stress is still zero, the
fibril is crimped but it still has within it some nonzero strain ef.
We now discuss the re-load curve and how we determine the time
tA0 at which the stress attains a positive value once again.

2.6.3 Fibril Response—Second Load (First Reload) and
Unload. After reducing the macroscopic strain to zero at t¼ tD, it
is once again increased for the second load cycle. In this illustra-
tive example, we have used the same strain rate for the second
load cycle, but the theory would be valid for any other strain rate.
At t¼ tD, the fibril strain is still reducing to accommodate the zero
fibril stress condition; however, at some later time t ¼ tA0 when

eðtA0 Þ ¼ ð1þ ecÞef ðtA0 Þ þ ec (23)

the fibril will start to take up stress once again since it will have
straightened (this expression is obtained by substituting t ¼ tA0
into Eq. (7) and rearranging). We note that this second critical
strain is larger than the first. This is because the fibril had an initial
“rest length” ‘0, but, as a result of the first load cycle, it is still
strained in its zero stress state. The “rest length,” therefore, has
increased in its slackened state (we can call this new rest length
‘1ðtÞ, which is a monotonically decreasing function of time that
tends to ‘0 as t!1). During the reload curve, the fibril will
straighten when the fascicle length L(t) is equal to the new rest
length. The second critical strain, therefore, is larger than the first
for all fibrils that underwent straightening in the first load cycle.
For those fibrils that did not undergo straightening, the second
critical strain is equal to the first.

The fibril stress during the second loading is given by

rf e tð Þ; ecð Þ ¼ E 0ð Þ e tð Þ � ec

1þ ec
þ
ðt

tA

E0 t� sð Þef sð Þds; t 2 tA0 ; tC0½ �

(24)

which extends to tC0 for the same reason as the first loading. As such,
in summary, over the full two-cycles the fibril stress is given by

rf e tð Þ; ecð Þ

¼

0 t 2 0; tA½ �

E 0ð Þ e tð Þ � ec

1þ ec
þ
ðt

tA

E0 t� sð Þef sð Þds t 2 tA; tC½ �

0 t 2 tC; tA0½ �

E 0ð Þ e tð Þ � ec

1þ ec
þ
ðt

tA

E0 t� sð Þef sð Þds t 2 tA0 ; tC0½ �

0 t 2 tC0 ;1½ Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(25)

Fig. 6 Schematic depiction of a two-cycle tension test on a
fascicle of length L0, showing: (a) the imposed fascicle strain,
(b) the corresponding strain in a fibril of length ‘0 > L0, and (c)
the corresponding fibril stress
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and the fibril strain is given by

ef e tð Þ; ecð Þ ¼

0 t 2 0; tA½ �
e tð Þ � ec

1þ ec
t 2 tA; tC½ �ðtC

tA

J0 t� sð Þrf sð Þds t 2 tC; tA0½ �

e tð Þ � ec

1þ ec
t 2 tA0 ; tC0½ �ðtC

tA

J0 t� sð Þrf sð Þds

þ
Ð tC0

tA0
J0 t� sð Þrf sð Þds t 2 tC0 ;1½ Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(26)

We can see from the above expressions that the stress and strain
in a given fibril are dependent only on the macroscopic imposed
fascicle strain e(t) and on the critical strain ec at which it first
becomes taut. Each fibril will have a different secondary critical
strain which will depend on the deformation history, but this can
be determined directly from the initial critical strain and the
imposed fascicle strain.

3 Experiments and Model Predictions

3.1 Materials and Methods

3.1.1 Rat Tail Tendon Preparation. Collagen fascicles were
extracted from the tail of a 3-month-old female Sprague-Dawley
rat, killed for other, nonrelated reasons, following previously pub-
lished protocols [50]. The skin was resected to expose the four tail
tendons, and fascicles extracted from the proximal end of a single
superior quadrant. The fascicles were teased directly from their
endotendinous sheaths, taking care not to load them during the
dissection process, and cut transversely to lengths of approxi-
mately 60 mm. Fascicles were dissected immediately before use,
to prevent drying prior to analysis.

3.1.2 Mechanical Assays. Fascicles were tested in previously
described custom-made loading chambers, allowing full hydration
of samples throughout testing [51]. The diameter of each fascicle
was first determined, taking continuous readings along the 10 mm
test length of the fascicle using a laser micrometer (LSM-501,
Mitutoyo, Kawasaki, Japan), from which the smallest diameter
was used to calculate the cross-sectional area, assuming a circular
shape. The measured diameters were 178 lm for fascicle 1,
205 lm for fascicle 2, and 186 lm for fascicle 3. The fascicle was
then secured between the stainless steel grips of the loading cham-
ber at a test length of 10 mm, the chamber filled with Dulbecco’s
modified Eagle’s medium and sealed, and the chamber secured
within a material test machine loading frame (InstronElectro-
Puls1000, Instron, High Wycombe, UK) equipped with a 250 N
load cell.

A preload of 0.02 N was applied to each fascicle to provide a
consistent starting point for the test, and the new distance between
the grips recorded as the effective gage length, with sample strains
calculated accordingly. Samples were preconditioned with 20 tri-
angular waveform cycles at 1 Hz between 0 and 6% strain, then
held for 1 h at 0% strain to ensure all fibrils had fully relaxed prior
to initiating the test, which consisted of ten loading cycles fol-
lowed by an incremental stress relaxation test. The ten loading
cycles were applied at 1 Hz between 0 and 6% strain (triangular
waveform), after which the sample was held at 0% strain for an
hour to allow recovery. The incremental stress relaxation test con-
sisted of three strain increments, taking the sample to 2%, 4%,
and 6% strain at a rate of 12% per second, holding the sample at
each increment for 5 min, before progressing immediately to the
next strain increment. Force and displacement data were collected
at 100 Hz during testing, and stress-time plots produced for each
sample.

3.2 Comparison Between Theory and Experiments

3.2.1 Parameter Selection. To calculate the theoretical stress
predicted by the model, we must select values for the fibril and
matrix constitutive parameters, and also to select a function for
the initial critical strain distribution pðecÞ. There are two studies
that fit Prony series relaxation functions to relaxation tests on indi-
vidual collagen fibrils—one tested sea cucumber collagen [3] and
the other tested bovine Achilles collagen [5]. Since bovine colla-
gen is mammalian (and therefore likely to have mechanical
behavior that is more similar to rat tail tendon), the parameter val-
ues reported by Yang et al. [5] for native collagen fibrils were
used in our model. In that paper, the relaxation moduli were
reported in nondimensional form as follows:

A1 ¼
E1

E1 þ E1 þ E2

¼ 0:2; A2 ¼
E2

E1 þ E1 þ E2

¼ 0:17 (27)

Therefore, to complete our relaxation function, we still need to
independently determine one of the three relaxation moduli. We
therefore used the literature on rat tail tendon fibril Young’s mod-
uli to determine the value of E1. The range of collagen Young’s
moduli for rat tail tendon fibrils reported in the literature is wide,
ranging from tens of MPa [52] to 11.5 GPa [53]; however, the
value chosen for this study was 3 GPa, which is the lower of the
values measured by Grant et al. [54] in a recent study and gives a
value of E0 ¼ E1 þ E1 þ E2 that is close the upper value of
5 GPa report by Grant et al. Therefore, a summary of the fibril
parameters used here is as follows (quantities reported to two sig-
nificant figures):

E1 ¼ 3:0 GPa; E1 ¼ 950 MPa; E2 ¼ 810 MPa

s1
r ¼ 1:9 s; s2

r ¼ 52 s
(28)

Note that these parameters were selected a priori and were not
used as fitting parameters. To the authors’ knowledge, there is no
published study that reports the Young’s modulus of tendon
extracollagenous matrix explicitly; however, Henninger et al. [55]
reported that the elastin (one of the major components of tendon
matrix) contribution to the peak stress of porcine medial collateral
ligaments under 10% axial strain is approximately 2 MPa (imply-
ing an effective Young’s modulus of approximately 20 MPa). The
matrix shear modulus has been estimated to be even lower, at
approximately 3–5 kPa [56]. Since these values are so low com-
pared to the fibril moduli, we have chosen to neglect the matrix
contribution in our initial modeling of the relaxation and cycle
tests. This decision reduces computational time and the number of
parameters in the model without significantly affecting the final

Fig. 7 Time-averaged relaxation tests for fascicle 1 (red - lowest
peak stress), fascicle 2 (green - highest peak stress), and fascicle
3 (blue - intermediate peak stress). The dashed lines indicate the
time-steps at which the fitting process was applied in order to
determine the parameters l and s reported in Table 1.
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reported fascicle stresses. We later re-introduce the matrix phase
in order to explain strain-dependent relaxation. The collagen vol-
ume fraction was selected to be

/ ¼ 0:80 (29)

This was the collagen area fraction (to two significant figures) in
4–6-month-old Wistar rat tail tendons determined by Screen et al.
[57]; we assume the collagen volume fraction in rat tail tendon
does not differ significantly from this value.

Finally, the initial critical strain distribution was modeled by a
truncated normal distribution, that it is defined over the range
ð0;1Þ

p ecð Þ ¼
e�

ec�lð Þ2

2s2

ffiffiffiffiffiffi
2p
p

s 1� 1

2
erfc

lffiffiffi
2
p

s

� � ! (30)

where l and s are the truncated equivalents of the mean and standard
deviation of the normal probability distribution function, respec-
tively. This distribution was chosen due to the fact that its parameters
can be understood intuitively. The values of l and s were predicted
by fitting them to the relaxation test data, as discussed below.

3.2.2 Relaxation Tests. To model the incremental relaxation
tests, the following fascicle strain was input into the model:

eðtÞ ¼

0:12t 0 � t < 0:17

0:02 0:17 � t < 300:17

0:02þ 0:12ðt� 300:17Þ 300:17 � t < 300:33

0:04 300:33 � t < 600:33

0:04þ 0:12ðt� 600:33Þ 600:33 � t < 600:5

0:06 600:5 � t < 900:5

8>>>>>>>><
>>>>>>>>:

(31)

where t is measured in seconds.

Table 1 Critical strain distribution parameters for each fasci-
cle, predicted by fitting to relaxation data

Fascicle l s

1 0 0.114
2 0.039 0.016
3 0.047 0.011

Fig. 8 Model fits (black) and experimental data for fascicle 1 (red - top), fascicle 2 (green - middle)
and fascicle 3 (blue - bottom). In (a)–(c), the critical strain distribution parameters were fitted to the
relaxation test data, in (d)–(f) the same parameters were used to predict the response under cyclic
loading. Parameter values: E‘ ¼ 3:0 GPa; E1 ¼ 950 MPa; E2 ¼ 810 MPa; s1

r ¼ 1:9 s; s2
r ¼ 52 s.
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To remove noise and obtain data suitable for fitting, a 1000
time-step (equivalent to 10 s) moving average was applied to each
dataset. The values of l and s were determined by minimizing the
l2 norm of the residuals between the theoretical and experimental
values at three points along the averaged relaxation curves, as
illustrated in Fig. 7.

3.2.3 Cycle Tests. For the cycle tests, the first two cycles of
the ten that were carried out were modeled. The exact form for the
fascicle strain used in the model was

eðtÞ ¼

0:12t 0 � t < 0:5

0:06� 0:12t 0:5 � t < 1

0:12ðt� 1Þ 1 � t < 1:5

0:06� 0:12ðt� 1Þ 1:5 � t < 2

8>>>><
>>>>:

(32)

where again, t is measured in seconds.
For the cycle tests, the values of l and s obtained from the

relaxation tests were used. Therefore, these theoretical plots are
predictions as no fitting took place to match the cycle test results
directly.

3.2.4 Results. The values of l and s used to fit each relaxation
test are shown in Table 1. The results of the fitting to the relaxa-
tion tests are shown in Figs. 8(a)–8(c) (these plots show the
raw data, as opposed to the averaged data shown in Fig. 7),
and the resulting predictions for the cycle tests are shown in
Figs. 8(d)–8(f). We note the remarkable agreement with the cyclic
data given that these datasets did not contribute to the fitting pro-
cedure. In cycle tests 2 and 3, a small amount of friction was evi-
dent at the bottom of the actuator travel, where the top grip came
into contact with the chamber; therefore, in order to minimize its
effects on the data, a graded moving average filter (over nine time
points close to the peaks, increasing gradually to 15 time points in
the troughs) was used to smooth the stress data at the bases of the
troughs for all three datasets. The predicted critical strain distribu-
tion functions are shown in Fig. 9.

To assess the precision of the model’s predictions, three con-
tour plots are provided in Fig. 10 which show the sum of the
squared residuals at the three points illustrated in Fig. 7. As can be
seen, the range of values of l and s that fit the first relaxation test
is relatively wide compared to those for the second and third
relaxation tests.

3.3 Time-Evolution of Fibril Length Distribution. Since
the model presented in this paper accounts for fibril creep, for a

given imposed fascicle strain e(t) and a given initial fibril length
‘0, we can calculate the associated fibril strain ef ðtÞ, and therefore,
the current fibril length l(t) at any point in time. An animation of
the time-evolution of the lengths of 1000 fibrils randomly sampled
from a fascicle with l ¼ 0:07 and s¼ 0.03 that is subjected to the
deformation described in Eq. (32) can be found in the data given
in the footnote link along with an animation of the case when fibril
creep is neglected.2 The length distribution is plotted in nondi-
mensional form as fibril length divided by initial fascicle length
(i.e., lðtÞ=L).

3.4 Strain-Dependent Relaxation. A key benefit of the
model described above is that it predicts that the relaxation rate of
a tendon depends upon the magnitude of the strain—a prediction
that is backed up by experimental data [22,23]. To demonstrate
this prediction, however, it is necessary to re-introduce the matrix
phase. In the absence of any experimental mechanical data on the
viscoelastic behavior of this phase, we shall assume that its instan-
taneous Young’s modulus is equal to 20 MPa, as derived
previously from the work of Henninger et al. [55], and that the
long-term modulus is half of that value at 10 MPa. We shall also
assume that the relaxation time of the matrix is much shorter than
that of the fibrils—we assume it to be one second. A summary of
these parameter values is as follows:

Em
0 ¼ 20 MPa; Em

1 ¼ 10 MPa; sm
r ¼ 1 s (33)

Using these parameters, along with those for the fibrils in
Eq. (28), we plot the relaxation behavior of a fascicle with
l ¼ 0:05, s¼ 0.004 that has been stretched to three different ini-
tial strains. The assumed deformation is

eðtÞ ¼
emaxðt=0:01Þ 0 � t < 0:01

emax t � 0:01

(
(34)

Fig. 9 Critical strain distributions used to model fascicle 1
(red - lowest modal critical strain), fascicle 2 (green - intermedi-
ate modal critical strain), and fascicle 3 (blue - highest modal
critical strain). The modal value of all three of these distribu-
tions falls within the range 0 £ ec £ 0:1, which is appropriate for
a tissue such as tendon, which is rarely subjected to strains
above 10% during the course of its normal range of functions.

Fig. 10 Contour plots of the sum of squared residuals at the
three points shown in Fig. 7 for (a) fascicle 1, (b) fascicle 2, and
(c) fascicle 3 for different values of l (horizontal axis) and s (ver-
tical axis). The yellow (lighter) regions show the parameter val-
ues that give the best fit.

2The raw experimental data is available to download and has the https://doi.org/
10.15127/1.308061. Additional Supplementary Material has the https://doi.org/
10.17632/yzzczmsttx.3. This includes the Mathematica codes used to fit and predict
the experimental data and the animations referred to in Sec. 3.3.
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where emax is the maximum strain. Note the rapid initial strain
rate. We consider three different values of emax: 2%; 4%, and 6%,
and in Fig. 11 we plot the corresponding nondimensionalized
stresses rðtÞ=rð0:01Þ as dashed lines. The solid lines for compari-
son are taken from the experimental data plotted in Fig. 7, by tak-
ing the mean of the relaxation responses of the three fascicles at
each initial strain level and nondimensionalizing the data on the
peak stress. A 100 time-step moving average was applied over the
first 500 data points, and a 1000 time-step moving average was
applied to the rest of the data in order to remove noise. As can be
seen, the model qualitatively predicts the behavior that is observed
experimentally. We emphasize that the LDCL and Raz and Lanir
models do not predict this behavior—the nondimensionalized
relaxation curves would be identical for all three initial strains for
both of these models.

4 Discussion

We have developed a model of tendon viscoelasticity based on
fascicle microstructure. The fibrils and extracollagenous matrix
were assumed to be linear viscoelastic, and it was shown that the
complex nonlinear behavior exhibited by tendons can be
explained as a geometrical effect. In other words, the findings of
the model are consistent with the hypothesis that tendon fibrils
and matrix are fundamental units that always have the same
mechanical properties (within a given tendon, at least) and that
differences between the behaviors of different fascicles are caused
by differences in the distributions of the lengths of their fibrils.

The model agrees well with experiments and is able to fit multi-
ple datasets with a single set of fibril constitutive parameters.
Additionally, we note that the results plotted in this paper do not
necessarily represent the best fit that could be achieved with this
model. Given the wide range of reported values for the fibril
Young’s modulus in the literature, it is impossible to be certain
that the values used in this paper are correct. Instead, the parame-
ters used represent an educated choice given the information
available. We emphasize they were decided upon a priori and
were not used as fitting parameters. It is likely that if it were possi-
ble to determine the true values of these parameters with certainty,
then the model would fit the mechanical test data even better. To
achieve this aim, it would be useful to carry out relaxation tests on
individual rat tail tendon collagen fibrils similar to those per-
formed on sea cucumber fibrils by Shen et al. [3] and on porcine
Achilles fibrils by Yang et al. [5]. Nevertheless, the fact that the
complete set of parameters (including the distribution parameters
that were determined by fitting to the relaxation data) can be used
to predict the outcome of the cycle tests so accurately (without
requiring any fitting to the cycle test data itself) demonstrates the

predictive power of this model. We note that both the peak
stresses and the gradients of the curves are predicted accurately.
Thus, it appears that the model captures the essential physics that
governs the viscoelastic behavior of tendon fascicles.

The fibril critical strain distributions used to fit the data in this
paper should not be seen as predictions of their true shapes. It
would only be possible to make such predictions if we had a much
higher degree of certainty in the fibril parameters. An increase in
the fibril relaxation moduli can be compensated for by moving the
mean of the truncated normal distribution further from zero and/or
by modifying the standard deviation while still achieving a good
fit to the data. Conversely, a decrease in the fibril relaxation mod-
uli can be compensated for by bringing the mean closer to zero.
The shape of the predicted critical strain distribution function for
fascicle 1 appears to be qualitatively different to those of fascicles
2 and 3; however, it is interesting to note that Fig. 10(a) shows
that the range of values of l and s that fit this dataset well is rela-
tively wide. By following the yellow contour, it can be seen that it
is still possible to fit the data well with a value of l much closer to
those predicted for fascicles 2 and 3. If a value closer to l ¼ 0:04
was imposed, for example, the distribution function for fascicle 1
would look much more similar to those of fascicles 2 and 3.
Another possibility is that the true fibril critical strain distributions
are bi- or multimodal. We did not consider these cases as we
wanted to keep the number of fitting parameters in our model to a
minimum; however, if these possibilities were considered, it
would be possible to improve the fit to the data significantly.

While our model and datasets do not allow us to make defini-
tive predictions about the values of the fibril constitutive parame-
ters, they do allow us to put a lower bound on one of their values.
For fascicle 2, the jump in stress between the 4% increment and
6% strain increment once fully relaxed is approximately 36 MPa.
Even if all of the fibrils were taut by this point and the collagen
volume fraction was 1, such a jump would require a long-time
fibril Young’s modulus of E1 ¼ 36=0:02 MPa ¼ 1800 MPa.
Therefore, we can state with confidence that the true value of this
parameter is strictly greater than 1800 MPa, provided that the
experimental measurements and the model are accurate. One
potential source of error in stress measurements of a tendon fasci-
cle is the fact that its cross-sectional area varies along its length.
In our experiments, the smallest measured diameter was used to
derive the cross-sectional area assuming a circular cross section.
Assuming a circular cross section gives an overestimate of the
true cross-sectional area of approximately 4% [58], which is why
the smallest measured diameter was used.

The inclusion of fibril creep in our model allowed us to predict
the time-evolution of the fibril length distribution in a fascicle.
The ability to determine individual fibril strain histories may be
important for predicting tendon rupture under a given time-
dependent deformation; therefore, fibril creep is a crucial feature
of the model that offers an improvement upon previous visco-
elastic collagen recruitment models. As can be seen in the data
given in the footnote link,2 neglecting fibril creep results in a sig-
nificant number of the fibrils being compressed to be shorter than
their initial length during the unloading phase of a cyclic test,
which would give rise to negative fibril stresses. This would not
be expected in crimped fibrils, and the resulting length distribution
functions have an unusual shape when fibril creep is neglected.
Bevan et al. [59] recently measured the recruitment probability
density function of tendon fibrils under quasi-static deformation
conditions using confocal microscopy. They used a triangular dis-
tribution to fit their data and predicted a modal critical strain of
around 1% and a maximal critical strain of around 3%. These pre-
dicted values are slightly smaller than those predicted on average
in this paper, but are of the same order of magnitude. If it were
possible to adapt this method to arbitrary strain rates, that could
be a way to validate the fibril length evolution predictions of the
proposed model.

As mentioned previously, one of the benefits of the proposed
model is that it can account for the strain-dependent relaxation

Fig. 11 Experimental (solid) and predicted (dashed) nondi-
mensionalized fascicle stress for relaxation tests with
different maximum strains: 2% (red - lowest curves), 4% (green -
intermediate curves), 6% (blue - highest curves). Parameter
values: E‘¼3:0GPa;E1¼950MPa;E2¼810 MPa; s1

r ¼1:9s; s2
r ¼

52s; Em
0 ¼20MPa;Em

‘ ¼10MPa; sm
r ¼1s;/¼0:8;l¼0:05, s50.004.

The relaxation rate depends upon the applied level of strain.
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that has been observed experimentally in the literature [22,23].
Although other constitutive models have predicted strain-
dependent relaxation (e.g. [60]), our approach has allowed us to
provide a microstructural explanation for the origin of this phe-
nomenon. It is interesting to note that the model predicts that this
behavior is due to the difference in the relaxation times between
the matrix and the fibrils. If we omit the matrix phase, as in Sec.
3.2, then this behavior is not exhibited, as indeed it is not in the
LDCL and Raz and Lanir models. When the matrix is included,
however, the relaxation behavior of the fascicle is similar to that
of the matrix for small strains (hence the short relaxation time)
and then becomes more and more like that of the fibrils as the ini-
tial strain is increased (hence the slower relaxation for higher
strains). This may give some insight into the origins of strain-
dependent relaxation behavior in other composite materials.
Given the material parameters used here, the extent of relaxation
is greater for small strains due to the difference between the initial
and long-time Young’s moduli of the matrix being bigger than
that of the fibrils. We note, however, that, in the absence of exper-
imental relaxation data on isolated extracollagenous matrix, we
chose the matrix long-time Young’s modulus and the relaxation
time somewhat arbitrarily in order to illustrate the phenomenon of
strain-dependent relaxation. Given these parameter values, the
matrix relaxes more quickly than the fibrils, and therefore at small
strains, the fascicles relax more quickly than at larger strains. If
the matrix parameters were such that it relaxed more slowly than
the fibrils, then this trend would reverse. Similarly, by changing
the ratio of Em

0 to Em
1, the extent of relaxation at small strains

could be changed to be greater or lesser than that at large strains.
If the nondimensional relaxation function of the matrix were iden-
tical to that of the fibrils, then the relaxation would no longer be
strain-dependent.

In addition to the fibril and matrix constitutive parameters, in
the long term it will be necessary to independently measure the
geometrical parameters /, l, and s. These could potentially be
measured by confocal microscopy [59,61] or X-ray computed
tomography [62–64]. If it were possible to measure all of the con-
stitutive and geometrical parameters independently for a given
fascicle that had also been mechanically tested, then the model
could be fully validated.

There have been several other approaches to modeling the
viscoelastic behavior of ligaments and tendons. De Vita and
Slaughter [40] developed a structural model of the strain rate-
dependent behavior of anterior cruciate ligaments that is valid for
large strain and Sopakayang and De Vita [41] developed a model
that is capable of accounting for creep, relaxation and strain stiff-
ening in soft tissues. The formulation of the latter model was simi-
lar to that presented here and gave a good fit to several datasets.
One key difference in that model is that the fibrils were modeled
as elastic and the matrix was modeled via a Maxwell model.
Given the evidence of the viscoelasticity of individual fibrils
[3,5], however, we considered it important to include this feature
within our model. In an early paper, Thornton et al. [38] showed
that linear viscoelasticity cannot explain the creep behavior of
rabbit medial collateral ligaments and the same group later went
on to develop a structural model of ligament creep based on fibril
recruitment [39]. This model was based on similar principles to
that derived here; however, since the focus was entirely on creep,
and they did not consider relaxation or cycle tests, they avoided
the need to consider the transition of a fibril between relaxation
and creep, which is one of the key contributions of the model pre-
sented in this paper (as illustrated schematically in Fig. 3).
Together, the results of Thornton et al. along with those presented
here indicate that fibril recruitment may play a role in both creep
and relaxation.

A possible extension to our model would be to include more
phases than the two considered here. In reality, the extracollage-
nous matrix is not a single phase, but is several materials (such as
elastin, proteoglycans and tenocytes, for example,). It may be of
interest in the future to model the interactions between these

materials explicitly rather than bundling them together into a
matrix phase. Another possible extension would be to model the
interaction between the fibrils and the matrix. Ciarletta and Ben
Amar [37] developed a dissipative theory for the bridges that arise
between collagenous and noncollagenous proteins in the extracel-
lular matrix, using an exponential strain energy function to
account for the shape of the tissue’s stress–strain curve phenom-
enologically. An interesting challenge would be to combine this
theory with the microstructural viscoelastic framework presented
in this paper to produce a model that accounts for both
fibril–matrix interaction and fibril length distributions.

We conclude by noting that, although this model was developed
for ligaments and tendons, it could be extended to higher dimen-
sions in order to model other soft tissues. This could be achieved
by introducing a probability distribution function to account for
the alignment of the fibrils in addition to their critical strain distri-
bution function. It could also be extended to model polymers by
assuming that the fundamental unit in the model is a polymer
chain oriented in three-dimensional space. For this to work, how-
ever, it would be necessary to track the strain in each individual
polymer chain, which is likely to be computationally expensive.
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Appendix: Creep Moduli and Relaxation Times
The creep moduli and relaxation times can be expressed in

terms of the relaxation moduli and relaxation times by taking the
Laplace transform of the constitutive equation, rearranging, then
taking the inverse Laplace transform and comparing coefficients.
The resulting relationships are as follows:

J0 ¼
1

E1
(A1)
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E1 E1 � E2ð Þ s1
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r

� �
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