Abstract

A hydrodynamic/acoustic splitting method was used to examine the effect of supraglottal acoustics on fluid–structure interactions during human voice production in a two-dimensional computational model. The accuracy of the method in simulating compressible flows in typical human airway conditions was verified by comparing it to full compressible flow simulations. The method was coupled with a three-mass model of vocal fold lateral motion to simulate fluid–structure interactions during human voice production. By separating the acoustic perturbation components of the airflow, the method allows isolation of the role of supraglottal acoustics in fluid–structure interactions. The results showed that an acoustic resonance between a higher harmonic of the sound source and the first formant of the supraglottal tract occurred during normal human phonation when the fundamental frequency was much lower than the formants. The resonance resulted in acoustic pressure perturbation at the glottis which was of the same order as the incompressible flow pressure and found to affect vocal fold vibrations and glottal flow rate waveform. Specifically, the acoustic perturbation delayed the opening of the glottis, reduced the vertical phase difference of vocal fold vibrations, decreased flow rate and maximum flow deceleration rate (MFDR) at the glottal exit; yet, they had little effect on glottal opening. The results imply that the sound generation in the glottis and acoustic resonance in the supraglottal tract are coupled processes during human voice production and computer modeling of vocal fold vibrations needs to include supraglottal acoustics for accurate predictions.

References

References
1.
Titze
,
I. R.
,
2008
, “
Nonlinear Source–Filter Coupling in Phonation: Theory
,”
J. Acoust. Soc. Am.
,
123
(
5
), pp.
2733
2749
.10.1121/1.2832337
2.
Flanagan
,
J.
, and
Landgraf
,
L.
,
1968
, “
Self-Oscillating Source for Vocal-Tract Synthesizers
,”
IEEE Trans. Audio Electroacoust.
,
16
(
1
), pp.
57
64
.10.1109/TAU.1968.1161949
3.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
,
1972
, “
Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords
,”
Bell Syst. Tech. J.
,
51
(
6
), pp.
1233
1268
.10.1002/j.1538-7305.1972.tb02651.x
4.
Titze
,
I.
,
Riede
,
T.
, and
Popolo
,
P.
,
2008
, “
Nonlinear Source–Filter Coupling in Phonation: Vocal Exercises
,”
J. Acoust. Soc. Am.
,
123
(
4
), pp.
1902
1915
.10.1121/1.2832339
5.
Hatzikirou
,
H.
,
Fitch
,
W. T.
, and
Herzel
,
H.
,
2006
, “
Voice Instabilities Due to Source-Tract Interactions
,”
Acta Acust. Acust.
,
92
(
3
), pp.
468
475
.https://www.ingentaconnect.com/content/dav/aaua/2006/00000092/00000003/art00013
6.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
,
2006
, “
Aerodynamically and Acoustically Driven Modes of Vibration in a Physical Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
120
(
5
), pp.
2841
2849
.10.1121/1.2354025
7.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
,
2006
, “
The Influence of Subglottal Acoustics on Laboratory Models of Phonation
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1558
1569
.10.1121/1.2225682
8.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
,
2009
, “
Influence of Vocal Fold Stiffness and Acoustic Loading on Flow-Induced Vibration of a Single-Layer Vocal Fold Model
,”
J. Sound Vib.
,
322
(
1–2
), pp.
299
313
.10.1016/j.jsv.2008.11.009
9.
Smith
,
B. L.
,
Nemcek
,
S. P.
,
Swinarski
,
K. A.
, and
Jiang
,
J. J.
,
2013
, “
Nonlinear Source-Filter Coupling Due to the Addition of a Simplified Vocal Tract Model for Excised Larynx Experiments
,”
J. Voice
,
27
(
3
), pp.
261
266
.10.1016/j.jvoice.2012.12.012
10.
Maxfield
,
L.
,
Palaparthi
,
A.
, and
Titze
,
I.
,
2017
, “
New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants
,”
J. Voice
,
31
(
2
), pp.
149
156
.10.1016/j.jvoice.2016.04.010
11.
Fant
,
G.
,
1960
,
Acoustic Theory of Speech Production
,
Mouton and Co
.,
The Hague, Netherlands
.
12.
Stevens
,
K. N.
, and
House
,
A. S.
,
1961
, “
An Acoustical Theory of Vowel Production and Some of Its Implications
,”
J. Speech Lang. Hear. Res.
,
4
(
4
), pp.
303
320
.10.1044/jshr.0404.303
13.
Story
,
B. H.
,
2002
, “
An Overview of the Physiology, Physics and Modeling of the Sound Source for Vowels
,”
Acoust. Sci. Technol.
,
23
(
4
), pp.
195
206
.10.1250/ast.23.195
14.
Titze
,
I. R.
,
2006
, “
Theoretical Analysis of Maximum Flow Declination Rate Versus Maximum Area Declination Rate in Phonation
,”
J. Speech Lang. Hear. Res.
,
49
(
2
), pp.
439
447
.10.1044/1092-4388(2006/034)
15.
Zhang
,
L. T.
,
Krane
,
M. H.
, and
Yu
,
F.
,
2019
, “
Modeling of Slightly-Compressible Isentropic Flows and Compressibility Effects on Fluid-Structure Interactions
,”
Comput. Fluids
,
182
, pp.
108
117
.10.1016/j.compfluid.2019.02.013
16.
Švancara
,
P.
,
Horáček
,
J.
, and
Hrůza
,
V.
,
2011
, “
FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation
,”
Vibration Problems ICOVP 2011
, Prague, Czech Republic, Sept. 5–8, pp.
801
807
.10.1007/978-94-007-2069-5_108
17.
Saurabh
,
S.
,
2017
, “
Direct Numerical Simulation of Human Phonation
,”
Ph.D. thesis
,
University of Illinois at Urbana-Champaign
,
Champaign, IL
.https://ui.adsabs.harvard.edu/abs/2017APS..DFD.Q4010B/abstract
18.
Daily
,
D. J.
, and
Thomson
,
S. L.
,
2013
, “
Acoustically-Coupled Flow-Induced Vibration of a Computational Vocal Fold Model
,”
Comput. Struct.
,
116
, pp.
50
58
.10.1016/j.compstruc.2012.10.022
19.
Zörner
,
S.
,
Kaltenbacher
,
M.
, and
Döllinger
,
M.
,
2013
, “
Investigation of Prescribed Movement in Fluid–Structure Interaction Simulation for the Human Phonation Process
,”
Comput. Fluids
,
86
, pp.
133
140
.10.1016/j.compfluid.2013.06.031
20.
Link
,
G.
,
Kaltenbacher
,
M.
,
Breuer
,
M.
, and
Döllinger
,
M.
,
2009
, “
A 2D Finite-Element Scheme for Fluid–Solid–Acoustic Interactions and Its Application to Human Phonation
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
41–44
), pp.
3321
3334
.10.1016/j.cma.2009.06.009
21.
Bae
,
Y.
, and
Moon
,
Y. J.
,
2008
, “
Aerodynamic Sound Generation of Flapping Wing
,”
J. Acoust. Soc. Am.
,
124
(
1
), pp.
72
81
.10.1121/1.2932340
22.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries
,”
J. Comput. Phys.
,
230
(
4
), pp.
1000
1019
.10.1016/j.jcp.2010.10.017
23.
Šidlof
,
P.
,
Zörner
,
S.
, and
Hüppe
,
A.
,
2013
, “
Numerical Simulation of Flow-Induced Sound in Human Voice Production
,”
Procedia Eng.
,
61
, pp.
333
340
.10.1016/j.proeng.2013.08.024
24.
Schoder
,
S.
,
Weitz
,
M.
,
Maurerlehner
,
P.
,
Hauser
,
A.
,
Falk
,
S.
,
Kniesburges
,
S.
,
Döllinger
,
M.
, and
Kaltenbacher
,
M.
,
2020
, “
Hybrid Aeroacoustic Approach for the Efficient Numerical Simulation of Human Phonation
,”
J. Acoust. Soc. Am.
,
147
(
2
), pp.
1179
1194
.10.1121/10.0000785
25.
Zañartu
,
M.
,
Mongeau
,
L.
, and
Wodicka
,
G. R.
,
2007
, “
Influence of Acoustic Loading on an Effective Single Mass Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
121
(
2
), pp.
1119
1129
.10.1121/1.2409491
26.
Jiang
,
W.
,
Zheng
,
X.
, and
Xue
,
Q.
,
2017
, “
Computational Modeling of Fluid–Structure–Acoustics Interaction During Voice Production
,”
Front. Bioeng. Biotechnol.
,
5
, p.
7
.10.3389/fbioe.2017.00007PMCID: PMC5304452
27.
Seo
,
J. H.
, and
Moon
,
Y. J.
,
2006
, “
Linearized Perturbed Compressible Equations for Low Mach Number Aeroacoustics
,”
J. Comput. Phys.
,
218
(
2
), pp.
702
719
.10.1016/j.jcp.2006.03.003
28.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
Loebbecke
,
A. V.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
29.
Zheng
,
X.
,
Xue
,
Q.
,
Mittal
,
R.
, and
Beilamowicz
,
S.
,
2010
, “
A Coupled Sharp-Interface Immersed Boundary-Finite-Element Method for Flow-Structure Interaction With Application to Human Phonation
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111003
.10.1115/1.4002587
30.
Story
,
B. H.
, and
Titze
,
I. R.
,
1995
, “
Voice Simulation With a Body‐Cover Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
97
(
2
), pp.
1249
1260
.10.1121/1.412234
31.
Zheng
,
X.
,
Mittal
,
R.
,
Xue
,
Q.
, and
Bielamowicz
,
S.
,
2011
, “
Direct-Numerical Simulation of the Glottal Jet and Vocal-Fold Dynamics in a Three-Dimensional Laryngeal Model
,”
J. Acoust. Soc. Am.
,
130
(
1
), pp.
404
415
.10.1121/1.3592216
32.
Xue
,
Q.
,
Mittal
,
R.
,
Zheng
,
X.
, and
Bielamowicz
,
S.
,
2012
, “
Computational Modeling of Phonatory Dynamics in a Tubular Three-Dimensional Model of the Human Larynx
,”
J. Acoust. Soc. Am.
,
132
(
3
), pp.
1602
1613
.10.1121/1.4740485
33.
Xue
,
Q.
,
Zheng
,
X.
,
Mittal
,
R.
, and
Bielamowicz
,
S.
,
2014
, “
Subject-Specific Computational Modeling of Human Phonation
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1445
1456
.10.1121/1.4864479
34.
Xue
,
Q.
, and
Zheng
,
X.
,
2017
, “
The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-Dimensional Computational Laryngeal Model
,”
J. Voice
,
31
(
3
), pp.
275
281
.10.1016/j.jvoice.2016.04.006
35.
Jiang
,
W.
,
Rasmussen
,
J. H.
,
Xue
,
Q.
,
Ding
,
M.
,
Zheng
,
X.
, and
Elemans
,
C. P. H.
,
2020
, “
High-Fidelity Continuum Modeling Predicts Avian Voiced Sound Production
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
9
), pp.
4718
4723
.10.1073/pnas.1922147117
36.
Edgar
,
N.
, and
Visbal
,
M.
,
2003
, “
A General Buffer Zone-Type Non-Reflecting Boundary Condition for Computational Aeroacoustics
,”
AIAA
Paper No. 2003-3300.10.2514/6.2003-3300
37.
Fant
,
G.
,
1986
, “
Glottal Flow: Models and Interaction
,”
J. Phonetics
,
14
(
3–4
), pp.
393
399
.10.1016/S0095-4470(19)30714-4
38.
Story
,
B. H.
,
Titze
,
I. R.
, and
Hoffman
,
E. A.
,
1996
, “
Vocal Tract Area Functions From Magnetic Resonance Imaging
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
537
554
.10.1121/1.415960
39.
Zheng
,
X.
,
Bielamowicz
,
S.
,
Luo
,
H.
, and
Mittal
,
R.
,
2009
, “
A Computational Study of the Effect of False Vocal Folds on Glottal Flow and Vocal Fold Vibration During Phonation
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
625
642
.10.1007/s10439-008-9630-9
40.
Titze
,
I. R.
,
2000
,
Principles of Voice Production
,
National Centre for Voice and Speech
,
Iowa City, IA
.
41.
Story
,
B. H.
, and
Titze
,
I. R.
,
1998
, “
Parameterization of Vocal Tract Area Functions by Empirical Orthogonal Modes
,”
J. Phonetics
,
26
(
3
), pp.
223
260
.10.1006/jpho.1998.0076
42.
Sondhi
,
M.
, and
Schroeter
,
J.
,
1987
, “
A Hybrid Time-Frequency Domain Articulatory Speech Synthesizer
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
35
(
7
), pp.
955
967
.10.1109/TASSP.1987.1165240
43.
Baken
,
R. J.
,
1987
,
Clinical Measurement of Speech and Voice
, Allyn and Bacon, Needham Heights, MA.
You do not currently have access to this content.