It has been hypothesized that early and rapid filtration of blood from cerebrospinal fluid (CSF) in post-subarachnoid hemorrhage patients may reduce hospital stay and related adverse events. In this study, we formulated a subject-specific computational fluid dynamics (CFD) model to parametrically investigate the impact of a novel dual-lumen catheter-based CSF filtration system, the NeurapheresisTM system (Minnetronix Neuro, Inc., St. Paul, MN), on intrathecal CSF dynamics. The operating principle of this system is to remove CSF from one location along the spine (aspiration port), externally filter the CSF routing the retentate to a waste bag, and return permeate (uncontaminated CSF) to another location along the spine (return port). The CFD model allowed parametric simulation of how the Neurapheresis system impacts intrathecal CSF velocities and steady-steady streaming under various Neurapheresis flow settings ranging from 0.5 to 2.0 ml/min and with a constant retentate removal rate of 0.2 ml/min. simulation of the Neurapheresis system were compared to a lumbar drain simulation with a typical CSF removal rate setting of 0.2 ml/min. Results showed that the Neurapheresis system at a maximum flow of 2.0 ml/min increased average steady-streaming CSF velocity 2X in comparison to lumbar drain (0.190 ± 0.133 versus 0.093 ± 0.107 mm/s, respectively). This affect was localized to the region within the Neurapheresis flow-loop. The mean velocities introduced by the flow-loop were relatively small in comparison to normal cardiac-induced CSF velocities.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.