Currently available knee joint kinematic tracking systems fail to nondestructively capture the subtle variation in joint and soft tissue kinematics that occur in native, injured, and reconstructed joint states. Microcomputed tomography (CT) imaging has the potential as a noninvasive, high-resolution kinematic tracking system, but no dynamic simulators exist to take advantage of this. The purpose of this work was to develop and assess a novel micro-CT compatible knee joint simulator to quantify the knee joint's kinematic and kinetic response to clinically (e.g., pivot shift test) and functionally (e.g., gait) relevant loading. The simulator applies closed-loop, load control over four degrees-of-freedom (DOF) (internal/external rotation, varus/valgus rotation, anterior/posterior translation, and compression/distraction), and static control over a fifth degree-of-freedom (flexion/extension). Simulator accuracy (e.g., load error) and repeatability (e.g., coefficient of variation) were assessed with a cylindrical rubber tubing structure and a human cadaveric knee joint by applying clinically and functionally relevant loads along all active axes. Micro-CT images acquired of the joint at a loaded state were then used to calculate joint kinematics. The simulator loaded both the rubber tubing and the cadaveric specimen to within 0.1% of the load target, with an intertrial coefficient of variation below 0.1% for all clinically relevant loading protocols. The resultant kinematics calculated from the acquired images agreed with previously published values, and produced errors of 1.66 mm, 0.90 mm, 4.41 deg, and 1.60 deg with respect to anterior translation, compression, internal rotation, and valgus rotation, respectively. All images were free of artifacts and showed knee joint displacements in response to clinically and functionally loading with isotropic CT image voxel spacing of 0.15 mm. The results of this study demonstrate that the joint-motion simulator is capable of applying accurate, clinically and functionally relevant loads to cadaveric knee joints, concurrent with micro-CT imaging. Nondestructive tracking of bony landmarks allows for the precise calculation of joint kinematics with less error than traditional optical tracking systems.

References

References
1.
Consumer Product Safety Commission,
2019
, “
National Electronic Injury Surveillance System 1998–2017 on NEISS Online Database, released April, 2018
,” Consumer Product Safety Commission.
2.
Zaffagnini
,
S.
,
Grassi
,
A.
,
Serra
,
M.
, and
Marcacci
,
M.
,
2015
, “
Return to Sport After ACL Reconstruction: How, When and Why? A Narrative Review of Current Evidence
,”
Joints
,
3
(
1
), pp.
25
30
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469040/pdf/25-30.pdf
3.
Farrokhi
,
S.
,
Tashman
,
S.
,
Gil
,
A. B.
,
Klatt
,
B. A.
, and
Fitzgerald
,
G. K.
,
2012
, “
Are the Kinematics of the Knee Joint Altered During the Loading Response Phase of Gait in Individuals With Concurrent Knee Osteoarthritis and Complaints of Joint Instability? A Dynamic Stereo X-Ray Study
,”
Clin. Biomech.
,
27
(
4
), pp.
384
389
.
4.
Driban
,
J. B.
,
Eaton
,
C. B.
,
Lo
,
G. H.
,
Ward
,
R. J.
,
Lu
,
B.
, and
McAlindon
,
T. E.
,
2014
, “
Association of Knee Injuries With Accelerated Knee Osteoarthritis Progression: Data From the Osteoarthritis Initiative
,”
Arthritis Care Res.
,
66
(
11
), pp.
1673
1679
.
5.
Oh
,
Y. K.
,
Kreinbrink
,
J. L.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2011
, “
Effect of ACL Transection on Internal Tibial Rotation in an In Vitro Simulated Pivot Landing
,”
J. Bone Jt. Surg.
,
93
(
4
), pp.
372
380
.
6.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.
,
1996
, “
Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
(
12
), pp.
1577
1585
.
7.
Gabriel
,
M. T.
,
Wong
,
E. K.
,
Woo
,
S. L.
,
Yagi
,
M.
, and
Debski
,
R. E.
,
2004
, “
Distribution of In Situ Forces in the Anterior Cruciate Ligament in Response to Rotatory Loads
,”
J. Orthop. Res.
,
22
(
1
), pp.
85
89
.
8.
Livesay
,
G. A.
,
Fujie
,
H.
,
Kashiwaguchi
,
S.
,
Morrow
,
D. A.
,
Fu
,
F. H.
, and
Woo
,
S. L.
,
1995
, “
Determination of the In Situ Forces and Force Distribution Within the Human Anterior Cruciate Ligament
,”
Ann. Biomed. Eng.
,
23
(
4
), pp.
467
474
.
9.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L.
, and
Fu
,
F. H.
,
1996
, “
A Combined Robotic/Universal Force Sensor Approach to Determine in Situ Forces of Knee Ligaments
,”
J. Biomech.
,
29
(
10
), pp.
1357
1360
.
10.
Wu
,
J. L.
,
Seon
,
J. K.
,
Gadikota
,
H. R.
,
Hosseini
,
A.
,
Sutton
,
K. M.
,
Gill
,
T. J.
, and
Li
,
G.
,
2010
, “
In Situ Forces in the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament Under Simulated Functional Loading Conditions
,”
Am. J. Sports Med.
,
38
(
3
), pp.
558
563
.
11.
Rasmussen
,
M. T.
,
Nitri
,
M.
,
Williams
,
B. T.
,
Moulton
,
S. G.
,
Cruz
,
R. S.
,
Dornan
,
G. J.
,
Goldsmith
,
M. T.
, and
LaPrade
,
R. F.
,
2016
, “
An In Vivo Robotic Assessment of the Anterolateral Ligament—Part 1: Secondary Role of the Anterolateral Ligament in the Setting of an Anterior Cruciate Ligament Injury
,”
Am. J. Sports Med.
,
44
(
3
), pp.
585
592
.
12.
Halewood
,
C.
,
Hirschmann
,
M. T.
,
Newman
,
S.
,
Hleihil
,
J.
,
Chaimski
,
G.
, and
Amis
,
A. A.
,
2011
, “
The Fixation Strength of a Novel ACL Soft-Tissue Graft Fixation Device Compared With Conventional Interference Screws: A Biomechanical Study In Vitro
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
19
(
4
), pp.
559
567
.
13.
Mayr
,
R.
,
Heinrichs
,
C. H.
,
Eichinger
,
M.
,
Coppola
,
C.
,
Schmoelz
,
W.
, and
Attal
,
R.
,
2015
, “
Biomechanical Comparison of 2 Anterior Cruciate Ligament Graft Preparation Techniques for Tibial Fixation: Adjustable-Length Loop Cortical Button or Interference Screw
,”
Am. J. Sports Med.
,
43
(
6
), pp.
1380
1385
.
14.
Kedgley
,
A. E.
,
Birmingham
,
T.
, and
Jenkyn
,
T. R.
,
2009
, “
Comparative Accuracy of Radiostereometric and Optical Tracking Systems
,”
J. Biomech.
,
42
(
9
), pp.
1350
1354
.
15.
Myers
,
C. A.
,
Torry
,
M. R.
,
Peterson
,
D. S.
,
Shelburne
,
K. B.
,
Giphart
,
J. E.
,
Krong
,
J. P.
,
Woo
,
S. L.
, and
Steadman
,
J. R.
,
2011
, “
Measurements of Tibiofemoral Kinematics During Soft and Stiff Drop Landings Using Biplane Fluoroscopy
,”
Am. J. Sports Med.
,
39
(
8
), pp.
1714
1722
.
16.
Haughom
,
B. D.
,
Souza
,
R.
,
Schairer
,
W. W.
,
Li
,
X.
, and
Ma
,
C. B.
,
2012
, “
Evaluating Rotational Kinematics of the Knee in ACL-Ruptured and Healthy Patients Using 3.0 Tesla Magnetic Resonance Imaging
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
20
(
4
), pp.
663
670
.
17.
Patel
,
V. V.
,
Hall
,
K.
,
Ries
,
M.
,
Lotz
,
J.
,
Ozhinsky
,
E.
,
Lindsey
,
C.
,
Lu
,
Y.
, and
Majumdar
,
S.
,
2004
, “
A Three-Dimensional MRI Analysis of Knee Kinematics
,”
J. Orthop. Res.
,
22
(
2
), pp.
283
292
.
18.
Kolaczek
,
S.
,
Hewison
,
C.
,
Caterine
,
S.
,
Ragbar
,
M. X.
,
Getgood
,
A.
, and
Gordon
,
K. D.
,
2016
, “
Analysis of 3D Strain in the Human Medial Meniscus
,”
J. Mech. Behav. Biomed. Mater
,
63
, pp.
470
475
.
19.
Buffi
,
J. H.
,
Crisco
,
J. J.
, and
Murray
,
W. M.
,
2013
, “
A Method for Defining Carpometacarpal Joint Kinematics From Three-Dimensional Rotations of the Metacarpal Bones Captured In Vivo Using Computed Tomography
,”
J. Biomech.
,
46
(
12
), pp.
2104
2108
.
20.
Lee
,
S.
,
Kim
,
Y. S.
,
Park
,
C. S.
,
Kim
,
K. G.
,
Lee
,
Y. H.
,
Gong
,
H. S.
,
Lee
,
H. J.
, and
Baek
,
G. H.
,
2014
, “
CT-Based Three-Dimensional Kinematic Comparison of Dart-Throwing Motion Between Wrists With Malunited Distal Radius and Contralateral Normal Wrists
,”
Clin. Radiol.
,
69
(
5
), pp.
462
467
.
21.
Arilla
,
F. V.
,
Yeung
,
M.
,
Bell
,
K.
,
Rahnemai-Azar
,
A. A.
,
Rothrauff
,
B. B.
,
Fu
,
F. H.
,
Debski
,
R. E.
,
Ayeni
,
O. R.
, and
Musahl
,
V.
,
2015
, “
Experimental Execution of the Simulated Pivot-Shift Test: A Systematic Review of Techniques
,”
Arthroscopy: J. Arthroscopic Relat. Surg.
,
31
(
12
), pp.
2445
2454.
22.
Engebretsen
,
L.
,
Wijdicks
,
C. A.
,
Anderson
,
C. J.
,
Westerhaus
,
B.
, and
LaPrade
,
R. F.
,
2012
, “
Evaluation of a Simulated Pivot Shift Test: A Biomechanical Study
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
20
(
4
), pp.
698
702
.
23.
Du
,
L. Y. U.
,
Joseph
,
Nikolov
,
H. N.
,
Pollmann
,
S. I.
,
Lee
,
T.-Y.
, and
Holdsworth
,
D. W.
,
2007
, “
A Quality Assurance Phantom for the Performance Evaluation of Volumetric Micro-CT Systems
,”
Phys. Med. Biol.
,
52
(
23
), pp.
7087
7108
.
24.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
25.
Fitzpatrick
,
J. M.
,
West
,
J. B.
, and
Maurer
,
C. R.
,
1998
, “
Predicting Error in Rigid-Body Point-Based Registration
,”
IEEE Trans. Med. Imaging
,
17
(
5
), pp.
694
702
.
26.
Spencer
,
L.
,
Burkhart
,
T. A.
,
Tran
,
M. N.
,
Rezansoff
,
A. J.
,
Deo
,
S.
,
Caterine
,
S.
, and
Getgood
,
A. M.
,
2015
, “
Biomechanical Analysis of Simulated Clinical Testing and Reconstruction of the Anterolateral Ligament of the Knee
,”
Am. J. Sports Med.
,
43
(
9
), pp.
2189
2197
.
27.
Lalone
,
E. A.
,
Peters
,
T. M.
,
King
,
G. W.
, and
Johnson
,
J. A.
,
2012
, “
Accuracy Assessment of an Imaging Technique to Examine Ulnohumeral Joint Congruency During Elbow Flexion
,”
Comput. Aided Surg.
,
17
(
3
), pp.
142
152
.
28.
Sugano
,
N.
,
Sasama
,
T.
,
Sato
,
Y.
,
Nakajima
,
Y.
,
Nishii
,
T.
,
Yonenobu
,
K.
,
Tamura
,
S.
, and
Ochi
,
T.
,
2001
, “
Accuracy Evaluation of Surface-Based Registration Methods in a Computer Navigation System for Hip Surgery Performed Through a Posterolateral Approach
,”
Comput. Aided Surg.
,
6
(
4
), pp.
195
203
.
29.
Lebel
,
B. P.
,
Pineau
,
V.
,
Gouzy
,
S. L.
,
Geais
,
L.
,
Parienti
,
J. J.
,
Dutheil
,
J. J.
, and
Vielpeau
,
C. H.
,
2011
, “
Total Knee Arthroplasty Three-Dimensional Kinematic Estimation Prevision. From a Two-Dimensional Fluoroscopy Acquired Dynamic Model
,”
Orthop. Traumatol. Surg. Res.
,
97
(
2
), pp.
111
120
.
30.
Morton
,
N. A.
,
Maletsky
,
L. P.
,
Pal
,
S.
, and
Laz
,
P. J.
,
2007
, “
Effect of Variability in Anatomical Landmark Location on Knee Kinematic Description
,”
J. Orthop. Res.
,
25
(
9
), pp.
1221
1230
.
31.
Kennedy
,
M. I.
,
Claes
,
S.
,
Fuso
,
F. A.
,
Williams
,
B. T.
,
Goldsmith
,
M. T.
,
Turnbull
,
T. L.
,
Wijdicks
,
C. A.
, and
LaPrade
,
R. F.
,
2015
, “
The Anterolateral Ligament: An Anatomic, Radiographic, and Biomechanical Analysis
,”
Am. J. Sports Med.
,
43
(
7
), pp.
1606
1615
.
32.
Armitage
,
S. E.
,
Pollmann
,
S. I.
,
Detombe
,
S. A.
, and
Drangova
,
M.
,
2012
, “
Least-Error Projection Sorting to Optimize Retrospectively Gated Cardiac Micro-CT of Free-Breathing Mice
,”
Med. Phys.
,
39
(
3
), pp.
1452
1461
.
You do not currently have access to this content.