This paper presents in vivo mechanical characterization of the muscularis, submucosa, and mucosa of the porcine stomach wall under large deformation loading. This is particularly important for the development of gastrointestinal pathology-specific surgical intervention techniques. The study is based on testing the cardiac and fundic glandular stomach regions using a custom-developed compression ultrasound elastography system. Particular attention has been paid to elucidate the heterogeneity and anisotropy of tissue response. A Fung hyperelastic material model has been used to model the mechanical response of each tissue layer. A univariate analysis comparing the initial shear moduli of the three layers indicates that the muscularis (5.69 ± 4.06 kPa) is the stiffest followed by the submucosa (3.04 ± 3.32 kPa) and the mucosa (0.56 ± 0.28 kPa). The muscularis is found to be strongly distinguishable from the mucosa tissue in the cardiac and fundic regions based on a multivariate discriminant analysis. The cardiac muscularis is observed to be stiffer than the fundic muscularis tissue (shear moduli of 7.96 ± 3.82 kPa versus 3.42 ± 2.96 kPa), more anisotropic (anisotropic parameter of 2.21 ± 0.77 versus 1.41 ± 0.38), and strongly distinguishable from its fundic counterpart. The results are consistent with the tissue morphology and are in accordance with our previous ex vivo tissue study. Finally, a univariate comparison of the in vivo and ex vivo initial shear moduli for each layer shows that the muscularis and submucosa tissues are softer while in vivo, but the mucosa tissue is stiffer while in vivo. The results concerning the mechanical properties highlight the inhomogeneity and anisotropy of multilayer stomach tissue.

References

References
1.
Fung
,
Y.
,
2013
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
,
New York
.
2.
Krouskop
,
T. A.
,
Wheeler
,
T. M.
,
Kallel
,
F.
,
Garra
,
B. S.
, and
Hall
,
T.
,
1998
, “
Elastic Moduli of Breast and Prostate Tissues Under Compression
,”
Ultrason. Imaging
,
20
(
4
), pp.
260
274
.
3.
Ottensmeyer
,
M. P.
, and
Salisbury
,
J. K.
, Jr.
,
2001
,
In Vivo Data Acquisition Instrument for Solid Organ Mechanical Property Measurement
,
Springer
,
Berlin
, pp.
975
982
.
4.
Gotoda
,
T.
,
Yamamoto
,
H.
, and
Soetikno
,
R. M.
,
2006
, “
Endoscopic Submucosal Dissection of Early Gastric Cancer
,”
J. Gastroenterol.
,
41
(
10
), pp.
929
942
.
5.
Ono
,
H.
,
Kondo
,
H.
,
Gotoda
,
T.
,
Shirao
,
K.
,
Yamaguchi
,
H.
,
Saito
,
D.
,
Hosokawa
,
K.
,
Shimoda
,
T.
, and
Yoshida
,
S.
,
2001
, “
Endoscopic Mucosal Resection for Treatment of Early Gastric Cancer
,”
Gut
,
48
(
2
), pp.
225
229
.
6.
Inoue
,
H.
,
Minami
,
H.
,
Kobayashi
,
Y.
,
Sato
,
Y.
,
Kaga
,
M.
,
Suzuki
,
M.
,
Satodate
,
H.
,
Odaka
,
N.
,
Itoh
,
H.
, and
Kudo
,
S.
,
2010
, “
Peroral Endoscopic Myotomy (POEM) for Esophageal Achalasia
,”
Endoscopy
,
42
(
4
), pp.
265
271
.
7.
Ikeda
,
K.
,
Mosse
,
C. A.
,
Park
,
P.-O.
,
Fritscher-Ravens
,
A.
,
Bergström
,
M.
,
Mills
,
T.
,
Tajiri
,
H.
, and
Swain
,
C. P.
,
2006
, “
Endoscopic Full-Thickness Resection: Circumferential Cutting Method
,”
Gastrointest. Endosc.
,
64
(
1
), pp.
82
89
.
8.
Cai
,
M.
,
Zhou
,
P.
,
Lourenço
,
L. C.
, and
Zhang
,
D.
,
2016
, “
Endoscopic Full-Thickness Resection (EFTR) for Gastrointestinal Subepithelial Tumors
,”
Gastrointest. Endosc. Clin. N. Am.
,
26
(
2
), pp.
283
295
.
9.
Reddy
,
N.
, and
Rao
,
P.
,
2004
, “
Per Oral Transgastric Endoscopic Appendectomy Human
,”
45th Annual Conference of the Society of Gastrointestinal Endoscopy of India
,
Jaipur, India
, pp.
28
29
.
10.
de Sousa
,
L.
,
de Sousa
,
J.
,
de Sousa Filho
,
L.
,
de Sousa
,
M.
,
de Sousa
,
V.
,
de Sousa
,
A.
, and
Zorron
,
R.
,
2009
, “
Totally NOTES (T-NOTES) Transvaginal Cholecystectomy Using Two Endoscopes: Preliminary Report
,”
Surg. Endosc.
,
23
(
11
), pp.
2550
2555–2555
.
11.
Rao
,
S.
,
Hayek
,
B.
, and
Summers
,
R.
,
1995
, “
Impedance Planimetry: An Integrated Approach for Assessing Sensory, Active, and Passive Biomechanical Properties of the Human Esophagus
,”
Am. J. Gastroenterol.
,
90
(
3
), pp.
431
438
.https://www.ncbi.nlm.nih.gov/pubmed/7872283
12.
Villadsen
,
G. E.
,
Storkholm
,
J. H.
,
Hendel
,
L.
,
Vilstrup
,
H.
, and
Gregersen
,
H.
,
1997
, “
Impedance Planimetric Characterization of Esophagus in Systemic Sclerosis Patients With Severe Involvement of Esophagus
,”
Dig. Dis. Sci.
,
42
(
11
), pp.
2317
2326
.
13.
Patel
,
R. S.
, and
Rao
,
S. S. C.
,
1998
, “
Biomechanical and Sensory Parameters of the Human Esophagus at Four Levels
,”
Am. J. Physiol.-Gastrointest. Liver Physiol.
,
275
(
2
), pp.
G187
G191
.
14.
Assentoft
,
J.
,
Gregersen
,
H.
, and
O'brien
,
W.
,
2000
, “
Determination of Biomechanical Properties in Guinea Pig Esophagus by Means of High Frequency Ultrasound and Impedance Planimetry
,”
Dig. Dis. Sci.
,
45
(
7
), pp.
1260
1266
.
15.
Kwiatek
,
M. A.
,
Hirano
,
I.
,
Kahrilas
,
P. J.
,
Rothe
,
J.
,
Luger
,
D.
, and
Pandolfino
,
J. E.
,
2011
, “
Mechanical Properties of the Esophagus in Eosinophilic Esophagitis
,”
Gastroenterology
,
140
(
1
), pp.
82
90
.
16.
McMahon
,
B. P.
,
Rao
,
S. S. C.
,
Gregersen
,
H.
,
Kwiatek
,
M. A.
,
Pandolfino
,
J. E.
,
Drewes
,
A. M.
,
Krarup
,
A. L.
,
Lottrup
,
C.
, and
Frøkjaer
,
J. B.
,
2011
, “
Distensibility Testing of the Esophagus
,”
Ann. N. Y. Acad. Sci.
,
1232
(
1
), pp.
331
340
.
17.
Takeda
,
T.
,
Nabae
,
T.
,
Kassab
,
G.
,
Liu
,
J.
, and
Mittal
,
R. K.
,
2004
, “
Oesophageal Wall Stretch: The Stimulus for Distension Induced Oesophageal Sensation
,”
Neurogastroenterol. Motil.
,
16
(
6
), pp.
721
728
.
18.
Jørgensen
,
C.
,
Dall
,
F.
,
Jensen
,
S.
, and
Gregersen
,
H.
,
1995
, “
A New Combined High-Frequency Ultrasound-Impedance Planimetry Measuring System for the Quantification of Organ Wall Biomechanics In Vivo
,”
J. Biomech.
,
28
(
7
), pp.
863
867
.
19.
Sokolis
,
D. P.
,
Orfanidis
,
I. K.
, and
Peroulis
,
M.
,
2011
, “
Biomechanical Testing and Material Characterization for the Rat Large Intestine: Regional Dependence of Material Parameters
,”
Physiol. Meas.
,
32
(
12
), pp.
1969
1982
.
20.
Higa
,
M.
,
Luo
,
Y.
,
Okuyama
,
T.
,
Takagi
,
T.
,
Shiraishi
,
Y.
, and
Yambe
,
T.
,
2007
, “
Passive Mechanical Properties of Large Intestine Under In Vivo and In Vivo Compression
,”
Med. Eng. Phys.
,
29
(
8
), pp.
840
844
.
21.
Zhao
,
J.
,
Liao
,
D.
,
Chen
,
P.
,
Kunwald
,
P.
, and
Gregersen
,
H.
,
2008
, “
Stomach Stress and Strain Depend on Location, Direction and the Layered Structure
,”
J. Biomech.
,
41
(
16
), pp.
3441
3447
.
22.
Jia
,
Z.
,
Li
,
W.
, and
Zhou
,
Z.
,
2015
, “
Mechanical Characterization of Stomach Tissue Under Uniaxial Tensile Action
,”
J. Biomech.
,
48
(
4
), pp.
651
658
.
23.
Tottrup
,
A.
,
Forman
,
A.
,
Uldbjerg
,
N.
,
Funch-Jensen
,
P.
, and
Andersson
,
K. E.
,
1990
, “
Mechanical Properties of Isolated Human Esophageal Smooth Muscle
,”
Am. J. Physiol.-Gastrointest. Liver Physiol.
,
258
(
3
), pp.
G338
G343
.
24.
Yang
,
J.
,
Zhao
,
J.
,
Liao
,
D.
, and
Gregersen
,
H.
,
2006
, “
Biomechanical Properties of the Layered Oesophagus and Its Remodelling in Experimental Type-1 Diabetes
,”
J. Biomech.
,
39
(
5
), pp.
894
904
.
25.
Stavropoulou
,
E. A.
,
Dafalias
,
Y. F.
, and
Sokolis
,
D. P.
,
2009
, “
Biomechanical and Histological Characteristics of Passive Esophagus: Experimental Investigation and Comparative Constitutive Modeling
,”
J. Biomech.
,
42
(
16
), pp.
2654
2663
.
26.
Natali
,
A. N.
,
Carniel
,
E. L.
, and
Gregersen
,
H.
,
2009
, “
Biomechanical Behaviour of Oesophageal Tissues: Material and Structural Configuration, Experimental Data and Constitutive Analysis
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1056
1062
.
27.
Sommer
,
G.
,
Schriefl
,
A.
,
Zeindlinger
,
G.
,
Katzensteiner
,
A.
,
Ainödhofer
,
H.
,
Saxena
,
A.
, and
Holzapfel
,
G. A.
,
2013
, “
Multiaxial Mechanical Response and Constitutive Modeling of Esophageal Tissues: Impact on Esophageal Tissue Engineering
,”
Acta Biomater.
,
9
(
12
), pp.
9379
9391
.
28.
Dargar
,
S.
,
Akyildiz
,
A. C.
, and
De
,
S.
,
2017
, “
In Situ Mechanical Characterization of Multilayer Soft Tissue Using Ultrasound Imaging
,”
IEEE Trans. Biomed. Eng.
,
64
(
11
), pp.
2595
2606
.https://www.ncbi.nlm.nih.gov/pubmed/28026748
29.
Zhao
,
J.
,
Liao
,
D.
, and
Gregersen
,
H.
,
2005
, “
Tension and Stress in the Rat and Rabbit Stomach Are Location‐and Direction‐Dependent
,”
Neurogastroenterol. Motil.
,
17
(
3
), pp.
388
398
.
30.
Klein
,
S.
,
Staring
,
M.
,
Murphy
,
K.
,
Viergever
,
M.
, and
Pluim
,
J. P.
,
2010
, “
Elastix: A Toolbox for Intensity-Based Medical Image Registration
,”
IEEE Trans. Med. Imaging
,
29
(
1
), pp.
196
205
.
31.
Tong
,
P.
, and
Fung
,
Y.-C.
,
1976
, “
The Stress-Strain Relationship for the Skin
,”
J. Biomech.
,
9
(
10
), pp.
649
657
.
32.
Humphrey
,
J.
,
Vawter
,
D.
, and
Vito
,
R.
,
1986
, “
Mechanical Behavior of Excised Canine Visceral Pleura
,”
Ann. Biomed. Eng.
,
14
(
5
), pp.
451
466
.
33.
Humphrey
,
J.
,
Strumpf
,
R.
, and
Yin
,
F.
,
1992
, “
A Constitutive Theory for Biomembranes: Application to Epicardial Mechanics
,”
ASME J. Biomech. Eng.
,
114
(
4
), pp.
461
466
.https://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1398946
34.
Chew
,
P. H.
,
Yin
,
F. C.
, and
Zeger
,
S. L.
,
1986
, “
Biaxial Stress-Strain Properties of Canine Pericardium
,”
J. Mol. Cell. Cardiol.
,
18
(
6
), pp.
567
578
.
35.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
264
275
.
36.
Holzapfel
,
G. A.
,
2006
, “
Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure
,”
J. Theor. Biol.
,
238
(
2
), pp.
290
302
.
37.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
(
9
), pp.
1027
1045
.
38.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
,
32
(
10
), pp.
1037
1047
.
39.
Feng
,
Y.
,
Okamoto
,
R. J.
,
Namani
,
R.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
,
2013
, “
Measurements of Mechanical Anisotropy in Brain Tissue and Implications for Transversely Isotropic Material Models of White Matter
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
117
132
.
40.
Tepole
,
A. B.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2012
, “
Stretching Skin: The Physiological Limit and Beyond
,”
Int. J. Non-Linear Mech.
,
47
(
8
), pp.
938
949
.
41.
Prot
,
V.
,
Skallerud
,
B.
, and
Holzapfel
,
G.
,
2007
, “
Transversely Isotropic Membrane Shells With Application to Mitral Valve Mechanics—Constitutive Modelling and Finite Element Implementation
,”
Int. J. Numer. Methods Eng.
,
71
(
8
), pp.
987
1008
.
42.
Chui
,
C.
,
Kobayashi
,
E.
,
Chen
,
X.
,
Hisada
,
T.
, and
Sakuma
,
I.
,
2007
, “
Transversely Isotropic Properties of Porcine Liver Tissue: Experiments and Constitutive Modelling
,”
Med. Biol. Eng. Comput.
,
45
(
1
), pp.
99
106
.
43.
Morrow
,
D. A.
,
Donahue
,
T. L. H.
,
Odegard
,
G. M.
, and
Kaufman
,
K. R.
,
2010
, “
Transversely Isotropic Tensile Material Properties of Skeletal Muscle Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
124
129
.
44.
Barbone
,
P. E.
, and
Gokhale
,
N. H.
,
2004
, “
Elastic Modulus Imaging: On the Uniqueness and Nonuniqueness of the Elastography Inverse Problem in Two Dimensions
,”
Inverse Probl.
,
20
(
1
), p.
283
.
45.
Byrd
,
R. H.
,
Schnabel
,
R. B.
, and
Shultz
,
G. A.
,
1988
, “
Approximate Solution of the Trust Region Problem by Minimization Over Two-Dimensional Subspaces
,”
Math. Program.
,
40
(
1–3
), pp.
247
263
.https://link.springer.com/article/10.1007/BF01580735
46.
Speirs
,
D.
,
de Souza Neto
,
E.
, and
Perić
,
D.
,
2008
, “
An Approach to the Mechanical Constitutive Modelling of Arterial Tissue Based on Homogenization and Optimization
,”
J. Biomech.
,
41
(
12
), pp.
2673
2680
.
47.
Davis
,
F. M.
, and
De Vita
,
R.
,
2012
, “
A Nonlinear Constitutive Model for Stress Relaxation in Ligaments and Tendons
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2541
2550
.
48.
Zhong
,
Q.
,
Zeng
,
W.
,
Huang
,
X.
,
Su
,
M.
, and
Luo
,
Y.
,
2014
, “
Constitutive Modeling and Finite Element Analysis of Myxomatous Mitral Leaflet Tissue
,”
J. Mech. Med. Biol.
,
14
(
3
), p.
1450031
.
49.
Voigt
,
W.
,
2014
,
Lehrbuch Der Kristallphysik (Mit Ausschluss Der Kristalloptik)
,
Springer-Verlag
,
Wiesbaden, Germany
.
50.
Mika
,
S.
,
Ratsch
,
G.
,
Weston
,
J.
,
Scholkopf
,
B.
, and
Mullers
,
K.-R.
,
1999
, “
Fisher Discriminant Analysis With Kernels
,”
Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop
,
Madison, WI
,
Aug. 25
, pp.
41
48
.
51.
Izenman
,
A. J.
,
2013
, “
Linear Discriminant Analysis
,”
Modern Multivariate Statistical Techniques
,
Springer
,
Berlin
, pp.
237
280
.
52.
Silverman
,
B. W.
,
1986
,
Density Estimation for Statistics and Data Analysis
,
CRC Press
,
New York
.
53.
Gazis
,
D.
,
Tadjbakhsh
,
I.
, and
Toupin
,
R.
,
1963
, “
The Elastic Tensor of Given Symmetry Nearest to an Anisotropic Elastic Tensor
,”
Acta Crystallogr.
,
16
(
9
), pp.
917
922
.
54.
Norris
,
A. N.
,
2007
, “
Quadratic Invariants of Elastic Moduli
,”
Q. J. Mech. Appl. Math.
,
60
(
3
), pp.
367
389
.
55.
Norris
,
A. N.
,
2006
, “
Elastic Moduli Approximation of Higher Symmetry for the Acoustical Properties of an Anisotropic Material
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
2114
2121
.
56.
Moakher
,
M.
, and
Norris
,
A. N.
,
2006
, “
The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry
,”
J. Elast.
,
85
(
3
), pp.
215
263
.
57.
Fedorov
,
F. I.
,
2013
,
Theory of Elastic Waves in Crystals
,
Springer Science & Business Media
,
New York
.
58.
Schummer
,
A.
,
Nickel
,
R.
, and
Sack
,
W.
,
1979
, “
The Viscera of the Domestic Mammals
,”
Textb. Anat. Domest. Anim.
,
2
, pp.
52
56
.https://books.google.com/books/about/The_Viscera_of_the_Domestic_Mammals.html?id=0rDhBwAAQBAJ&printsec=frontcover&source=kp_read_button#v=onepage&q&f=false
59.
Stachura
,
J.
,
Tarnawski
,
A.
, and
Dąbroś
,
W.
,
1993
, “
Apoptosis: Genetically Programmed Physiologic Cell Loss in Normal Gastric Oxyntic Mucosa and in Mucosa of Grossly Healed Gastric Ulcer
,”
J. Clin. Gastroenterol.
,
17
, pp.
S70
S77
.
60.
Konturek
,
P. C.
,
Brzozowski
,
T.
,
Konturek
,
S.
,
Pajdo
,
R.
,
Konturek
,
J.
,
Kwiecień
,
S.
,
Taut
,
A.
, and
Hahn
,
E.
,
1999
, “
Apoptosis in Gastric Mucosa With Stress-Induced Gastric Ulcers
,”
J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc.
,
50
(
2
), pp.
211
225
.https://europepmc.org/abstract/med/10424718
61.
Ito
,
S.
, and
Lacy
,
E. R.
,
1985
, “
Morphology of Rat Gastric Mucosal Damage, Defense, and Restitution in the Presence of Luminal Ethanol
,”
Gastroenterology
,
88
(
1
), pp.
250
260
.
You do not currently have access to this content.