Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.

References

References
1.
Magerl
,
F.
,
Aebi
,
M.
,
Gertzbein
,
S.
,
Harms
,
J.
, and
Nazarian
,
S.
,
1994
, “
A Comprehensive Classification of Thoracic and Lumbar Injuries
,”
Eur. Spine J.
,
3
, pp.
184
201
.10.1007/BF02221591
2.
Johnell
,
O.
and
Kanis
,
J.
,
2005
, “
Epidemiology of Osteoporotic Fractures
,”
Osteoporosis Int.
,
16
, pp.
S3
S7
.10.1007/s00198-004-1702-6
3.
Johnell
,
O.
and
Kanis
,
J.
,
2006
, “
An Estimate of the Worldwide Prevalence and Disability Associated With Osteoporotic Fractures
”.
Osteoporosis Int.
,
17
, pp.
1726
1733
.10.1007/s00198-006-0172-4
4.
Kanis
,
J.
,
McCloskey
,
E.
,
Johansson
,
H.
,
Oden
,
A.
,
Melton
,
L.
, and
Khaltaev
,
N.
,
2008
, “
A Reference Standard for the Description of Osteoporosis
,”
Bone
,
42
, pp.
467
475
.10.1016/j.bone.2007.11.001
5.
Old
,
J.
and
Calvert
,
M.
,
2004
, “
Vertebral Compression Fractures in the Elderly
,”
Am. Fam. Physician
,
69
, pp.
111
116
.
6.
Lydick
,
E.
,
Martin
,
A.
, and
Yawn
,
B.
,
1996
. “
Impact of Fears on Quality of Life in Patients With a Silent Disease: Osteoporosis
,”
Clin. Ther.
,
18
(
6
), pp.
1307
1315
.10.1016/S0149-2918(96)80084-1
7.
NIH
,
2000
, “
NIH Consensus Statement: Osteoporosis Prevention, Diagnosis, and Therapy
,” Technical Report, National Institutes of Health, Bethesda, MD.
8.
Nazarian
,
A.
and
Müller
,
R.
,
2004
, “
Time-Lapsed Microstructural Imaging of Bone Failure Behavior
,”
J. Biomech.
,
37
(
1
), pp.
55
65
.10.1016/S0021-9290(03)00254-9
9.
Thurner
,
P.
,
Wyss
,
P.
,
Voide
,
R.
,
Stauber
,
M.
,
Stampanoni
,
M.
,
Sennhauser
,
U.
, and
Müller
,
R.
,
2006
, “
Time-Lapsed Investigation of Three-Dimensional Failure and Damage Accumulation in Trabecular Bone Using Synchrotron Light
,”
Bone
,
39
(
2
), pp.
289
299
.10.1016/j.bone.2006.01.147
10.
Hulme
,
P.
,
Ferguson
,
S.
, and
Boyd
,
S.
,
2008
, “
Determination of Vertebral Endplate Deformation Under Load Using Micro-Computed Tomography
,”
J. Biomech.
,
41
(
1
), pp.
78
85
.10.1016/j.jbiomech.2007.07.018
11.
Bay
,
B.
,
Smith
,
T.
,
Fyhrie
,
D.
, and
Saad
,
M.
,
1999
, “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography
,”
Exp. Mech.
,
39
, pp.
217
226
.10.1007/BF02323555
12.
Verhulp
,
E.
,
Rietbergen
,
B.
, and
Huiskes
,
R.
,
2004
, “
A Three-Dimensional Digital Image Correlation Technique for Strain Measurements in Microstructures
,”
J. Biomech.
,
37
(
9
), pp.
1313
1320
.10.1016/j.jbiomech.2003.12.036
13.
Silva
,
M.
and
Gibson
,
L.
,
1997
, “
Modeling the Mechanical Behavior of Vertebral Trabecular Bone: Effects of Age-Related Changes in Microstructure
,”
Bone
,
21
(
2
), pp.
191
199
.10.1016/S8756-3282(97)00100-2
14.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1998
, “
Computed Tomography-Based Finite Element Analysis Predicts Failure Loads and Fracture Patterns for Vertebral Sections
,”
J. Orthop. Res.
,
16
(
3
), pp.
300
308
.10.1002/jor.1100160305
15.
Bevill
,
G.
and
Keaveny
,
T. M.
,
2009
, “
Trabecular Bone Strength Predictions Using Finite Element Analysis of Micro-Scale Images at Limited Spatial Resolution
,”
Bone
,
44
(
4
), pp.
579
584
.10.1016/j.bone.2008.11.020
16.
Charlebois
,
M.
,
Jirasek
,
M.
, and
Zysset
,
P.
,
2010
, “
A Nonlocal Constitutive Model for Trabecular Bone Softening in Compression
,”
Biomech. Model. Mechanobiol.
,
9
, pp.
597
611
.10.1007/s10237-010-0200-3
17.
Dall'Ara
,
E.
,
Schmidt
,
R.
, and
Zysset
,
P.
,
2012
, “
Microindentation can Discriminate Between Damaged and Intact Human Bone Tissue
,”
Bone
,
50
(
4
), pp.
925
929
.10.1016/j.bone.2012.01.002
18.
Zysset
,
P.
,
1994
, “
A Constitutive Law for Trabecular Bone
,” Ph.D. thesis, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
19.
DallAra
,
E.
,
Pahr
,
D.
,
Varga
,
P.
,
Kainberger
,
F.
, and
Zysset
,
P.
,
2012
, “
QCT-Based Finite Element Models Predict Human Vertebral Strength in vitro Significantly Better Than Simulated DEXA
,”
Osteoporosis Int.
,
23
, pp.
563
572
.10.1007/s00198-011-1568-3
20.
Hosseini
,
H. S.
,
Pahr
,
D. H.
, and
Zysset
,
P. K.
,
2012
, “
Modeling and Experimental Validation of Trabecular Bone Damage, Softening and Densification Under Large Compressive Strains
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
93
102
.10.1016/j.jmbbm.2012.06.005
21.
Pahr
,
D.
and
Zysset
,
P.
,
2008
, “
Influence of Boundary Conditions on Computed Apparent Elastic Properties of Cancellous Bone
,”
Biomech. Model. Mechanobio.
,
7
, pp.
463
476
.10.1007/s10237-007-0109-7
22.
Homminga
,
J. J.
,
2003
,
Towards a Rational Definition of Osteoporosis
,
Technische Universiteit
,
Eindhoven
, Netherlands.
23.
Adams
,
M. A.
,
Pollintine
,
P.
,
Tobias
,
J. H.
,
Wakley
,
G. K.
, and
Dolan
,
P.
,
2006
, “
Intervertebral Disc Degeneration can Predispose to Anterior Vertebral Fractures in the Thoracolumbar Spine
,”
J. Bone Miner. Res.
,
21
(
9
), pp.
1409
1416
.10.1359/jbmr.060609
24.
Chevalier
,
Y.
,
Pahr
,
D.
, and
Zysset
,
P. K.
,
2009
, “
The Role of Cortical Shell and Trabecular Fabric in Finite Element Analysis of the Human Vertebral Body
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111003
.10.1115/1.3212097
25.
Hosseini
,
H. S.
,
2013
, “
Constitutive Modeling of Trabecular Bone in Large Strain Compression
,” Ph.D. thesis, University of Bern, Bern.
26.
Schwiedrzik
,
J.
,
Wolfram
,
U.
, and
Zysset
,
P.
,
2013
, “
A Generalized Anisotropic Quadric Yield Criterion and Its Application to Bone Tissue at Multiple Length Scales
,”
Biomech. Model. Mechanobiol.
(submitted).
27.
Poh
,
L.
and
Swaddiwudhipong
,
S.
,
2009
, “
Gradient-Enhanced Softening Material Models
,”
Int. J. Plast.
,
25
(
11
), pp.
2094
2121
.10.1016/j.ijplas.2009.01.003
28.
Poh
,
L. H.
and
Swaddiwudhipong
,
S.
,
2009
, “
Over-Nonlocal Gradient Enhanced Plastic-Damage Model for Concrete
,”
Int. J. Solids Struct.
,
46
(
2526
), pp.
4369
4378
.10.1016/j.ijsolstr.2009.08.025
29.
Pahr
,
D. H.
and
Zysset
,
P. K.
,
2009
, “
From High-Resolution CT Data to Finite Element Models: Development of an Integrated Modular Framework
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
1
), pp.
45
57
.10.1080/10255840802144105
30.
Chevalier
,
Y.
,
Charlebois
,
M.
,
Pahr
,
D.
,
Varga
,
P.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
,
2008
, “
A Patient-Specific Finite Element Methodology to Predict Damage Accumulation in Vertebral Bodies Under Axial Compression, Sagittal Flexion and Combined Loads
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
477
487
.10.1080/10255840802078022
31.
Pahr
,
D. H.
and
Zysset
,
P.
,
2009
, “
A Comparison of Enhanced Continuum FE With Micro FE Models of Human Vertebral Bodies
,”
J. Biomech.
,
42
(
4
), pp.
455
462
.10.1016/j.jbiomech.2008.11.028
32.
Zysset
,
P. K.
,
Goulet
,
R. W.
, and
Hollister
,
S. J.
,
1998
, “
A Global Relationship Between Trabecular Bone Morphology and Homogenized Elastic Properties
,”
ASME J. Biomech. Eng.
,
120
(5), pp.
640
646
.10.1115/1.2834756
33.
Zysset
,
P. K.
,
2003
, “
A Review of Morphology-Elasticity Relationships in Human Trabecular Bone: Theories and Experiments
,”
J. Biomech.
,
36
(
10
), pp.
1469
1485
.10.1016/S0021-9290(03)00128-3
34.
Rincon-Kohli
,
L.
and
Zysset
,
P. K.
,
2009
, “
Multi-Axial Mechanical Properties of Human Trabecular Bone
,”
Biomech. Model. Mechanobiol.
,
8
(
3
), pp.
195
208
.10.1007/s10237-008-0128-z
35.
Zysset
,
P. K.
and
Rincon
,
L.
,
2006
, “
An Alternative Fabric-Based Yield and Failure Criterion for Trabecular Bone
,”
Mech. Biol. Tissue
, pp.
457
470
.10.1007/3-540-31184-X
36.
Rincon-Kohli
,
L.
,
2003
, “
Identification of a Multiaxial Failure Criterion for Human Trabecular Bone
,” Ph.D. thesis, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
37.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
.
John Wiley and Sons
,
New York
.
38.
Marsden
,
J. E.
and
Hughes
,
T. J. R.
,
1983
,
Mathematical Foundations of Elasticity
,
Prentice- Hall
,
Englewood Cliffs, NJ
.
39.
Lin
,
L. I.-K.
,
1989
, “
A Concordance Correlation Coefficient to Evaluate Reproducibility
,”
Biometrics
,
45
(
1
), pp.
255
268
.10.2307/2532051
40.
Eswaran
,
S. K.
,
Gupta
,
A.
, and
Keaveny
,
T. M.
,
2007
, “
Locations of Bone Tissue at High Risk of Initial Failure During Compressive Loading of the Human Vertebral Body
,”
Bone
,
41
(
4
), pp.
733
739
.10.1016/j.bone.2007.05.017
You do not currently have access to this content.