Periprosthetic bone remodeling is frequently observed after total hip replacement. Reduced bone density increases the implant and bone fracture risk, and a gross loss of bone density challenges fixation in subsequent revision surgery. Computational approaches allow bone remodeling to be predicted in agreement with the general clinical observations of proximal resorption and distal hypertrophy. However, these models do not reproduce other clinically observed bone density trends, including faster stabilizing mid-stem density losses, and loss-recovery trends around the distal stem. These may resemble trends in postoperative joint loading and activity, during recovery and rehabilitation, but the established remodeling prediction approach is often used with identical pre- and postoperative load and activity assumptions. Therefore, this study aimed to evaluate the influence of pre- to postoperative changes in activity and loading upon the predicted progression of remodeling. A strain-adaptive finite element model of a femur implanted with a cemented Charnley stem was generated, to predict 60 months of periprosthetic remodeling. A control set of model input data assumed identical pre- and postoperative loading and activity, and was compared to the results obtained from another set of inputs with three varying activity and load profiles. These represented activity changes during rehabilitation for weak, intermediate and strong recoveries, and pre- to postoperative joint force changes due to hip center translation and the use of walking aids. Predicted temporal bone density change trends were analyzed, and absolute bone density changes and the time to homeostasis were inspected, alongside virtual X-rays. The predicted periprosthetic bone density changes obtained using modified loading inputs demonstrated closer agreement with clinical measurements than the control. The modified inputs also predicted the clinically observed temporal density change trends, but still under-estimated density loss during the first three postoperative months. This suggests that other mechanobiological factors have an influence, including the repair of surgical micro-fractures, thermal damage and vascular interruption. This study demonstrates the importance of accounting for pre- to postoperative changes in joint loading and patient activity when predicting periprosthetic bone remodeling. The study's main weakness is the use of an individual patient model; computational expense is a limitation of all previously reported iterative remodeling analysis studies. However, this model showed sufficient computational efficiency for application in probabilistic analysis, and is an easily implemented modification of a well-established technique.

References

References
1.
Brodner
,
W.
,
Bitzan
,
P.
,
Lomoschitz
,
F.
,
Krepler
,
P.
,
Jankovsky
,
R.
,
Lehr
,
S.
,
Kainberger
,
F.
, and
Gottsauner-Wolf
,
F.
,
2006
, “
Changes in Bone Mineral Density in the Proximal Femur After Cementless Total Hip Arthroplasty
,”
J. Bone Joint Surg. Br.
,
86-B
, pp.
20
26
.10.1302/0301-620X.86B1.14637
2.
Chandran
,
P.
,
Azzabi
,
M.
,
Andrews
, and
M.
,
Bradley
,
J. G.
,
2012
, “
Periprosthetic Bone Remodeling After 12 Years Differs in Cemented and Uncemented Hip Arthroplasties
,”
Clin. Orthop. Relat. Res.
,
470
, pp.
1431
1435
.10.1007/s11999-011-2134-1
3.
Jayasuriya
,
R. L.
,
Buckley
,
S. C.
,
Hamer
,
A. J.
,
Kerry
,
R. M.
,
Stockley
,
I.
,
Tomouk
,
M. W.
, and
Wilkinson
,
J. M.
,
2013
, “
Effect of Sliding-Taper Compared With Composite-Beam Cemented Femoral Prosthesis Loading Regime on Proximal Femoral Bone Remodeling
,”
J. Bone Joint Surg. Am.
,
95
, pp.
19
27
.10.2106/JBJS.K.00657
4.
Penny
,
J. O.
,
Brixen
,
K.
,
Varmarken
,
J. E.
,
Ovesen
,
O.
, and
Overgaard
,
S.
,
2012
, “
Changes in Bone Mineral Density of the Acetabulum, Femoral Neck and Femoral Shaft, After Hip Resurfacing and Total Hip Replacement
,”
J. Bone Joint Surg. Br.
,
94-B
, pp.
1036
1044
.10.1302/0301-620X.94B8.28222
5.
Abadie
,
P.
,
Lebel
,
B.
,
Pineau
,
V.
,
Burdin
,
G.
, and
Vielpeau
,
C.
,
2010
, “
Cemented Total Hip Stem Design Influence on Adaptive Cortical Thickness and Femoral Morphology
,”
Orthop. Trauma Surg. Res.
,
96
, pp.
104
110
.10.1016/j.otsr.2009.11.011
6.
Stucinskas
,
J.
,
Clauss
,
M.
,
Tarasevicius
,
S.
,
Wingstrand
,
H.
, and
Ilchmann
,
T.
,
2012
, “
Long-Term Femoral Bone Remodelling After Cemented Hip Arthroplasty With the Muller Straight Stem in the Operated and Nonoperated Femora
,”
J. Arthroplasty
,
27
, pp.
927
933
.10.1016/j.arth.2011.09.011
7.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. J.
,
1987
, “
Adaptive Bone Remodelling Theory Applied to Prosthetic Design Analysis
,”
J. Biomech.
,
20
, pp.
1135
1150
.10.1016/0021-9290(87)90030-3
8.
Weinans
,
H.
,
Huiskes
,
R.
,
Verdonschot
,
N.
, and
van Rietbergen
,
B.
,
1991
, “
The Effect of Adaptive Bone Remodelling Threshold Levels on Resorption Around Noncemented Hip Stems
,”
Advances in Bioengineering
,
R.
Vanderby
, ed.,
ASME
,
New York
, pp.
303
306
.
9.
Weinans
,
H.
,
Huiskes
,
R.
,
van Rietbergen
,
B.
,
Sumner
,
D. R.
,
Turner
,
T. M.
, and
Galante
,
J. O.
,
1993
, “
Adaptive Bone Remodelling Around a Bonded Noncemented Total Hip Arthroplasty: A Comparison Between Animal Experiments and Computer Simulation
,”
J. Orthop. Res.
,
11
, pp.
500
513
.10.1002/jor.1100110405
10.
van Rietbergen
,
B.
,
Huiskes
,
R.
,
Weinans
,
H.
,
Sumner
,
D. R.
,
Turner
,
T. M.
, and
Galante
,
J. O.
,
1993
, “
The Mechanism of Bone Remodelling and Resorption Around Press-Fitted THA Stems
,”
J. Biomech.
,
26
, pp.
369
382
.10.1016/0021-9290(93)90001-U
11.
Kerner
,
J.
,
Huiskes
,
R.
,
van Lenthe
,
G. H.
,
Weinans
,
H.
,
van Rietbergen
,
B.
,
Engh
,
C. A.
, and
Amis
,
A. A.
,
1999
, “
Correlation Between Pre-Operative and Post-Operative Bone Loss in THA Can be Explained by Strain-Adaptive Remodeling
,”
J. Biomech.
,
32
, pp.
695
703
.10.1016/S0021-9290(99)00041-X
12.
Garcia
,
J. M.
,
Martinez
,
M. A.
, and
Doblaré
,
M.
,
2001
, “
An Isotropic Internal-External Bone Adaptation Model Based on a Combination of CAO and Continuum Damage Mechanics Technologies
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
, p.
355
377
.10.1080/10255840108908014
13.
Doblaré
,
M.
, and
Garcia
,
J. M.
,
2001
, “
Application of an Anisotropic Bone-Remodelling Model Based on a Damage-Repair Theory to the Analysis of the Proximal Femur Before and After Total Hip Replacement
,”
J. Biomech.
,
34
, pp.
1157
1170
.10.1016/S0021-9290(01)00069-0
14.
Turner
,
A. W. L.
,
Gillies
,
R. M.
,
Sekel
,
R.
,
Morris
,
P.
,
Bruce
,
W.
, and
Walsh
,
W. R.
,
2005
, “
Computational Bone Remodelling Simulations and Comparisons With DXA Results
,”
J. Orthop. Res.
,
23
, pp.
705
712
.10.1016/j.orthres.2005.02.002
15.
Gupta
,
S.
,
New
,
A. M. R.
, and
Taylor
,
M.
,
2006
, “
Bone Remodelling Inside a Cemented Resurfaced Femoral Head
,”
Clin. Biomech.
,
21
, pp.
594
602
.10.1016/j.clinbiomech.2006.01.010
16.
Scannell
,
P. T.
, and
Prendergast
,
P. J.
,
2009
, “
Cortical and Interfacial Bone Changes Around a Non-Cemented Hip Implant: Simulations Using a Combined Strain/Damage Algorithm
,”
Med. Eng. Phys.
,
31
, pp.
477
488
.10.1016/j.medengphy.2008.11.007
17.
Lerch
,
M.
,
Kurtz
,
A.
,
Stukenborg-Colsman
,
C.
,
Nolte
,
I.
,
Weigel
,
N.
,
Bouguecha
,
A.
, and
Behrens
,
B. A.
,
2012
, “
Bone Remodeling After Total Hip Arthroplasty With a Short Stemmed Metaphyseal Loading Implant: Finite Element Analysis Validated by a Prospective DXA Investigation
,”
J. Orthop. Res.
,
30
, pp.
1822
1829
.10.1002/jor.22120
18.
Tarala
,
M.
,
Janssen
,
D.
, and
Verdonschot
,
N.
,
2011
, “
Balancing Incompatible Endoprosthetic Design Goals: A Combined Ingrowth and Bone Remodeling Simulation
,”
Med. Eng. Phys.
,
33
, pp.
374
380
.10.1016/j.medengphy.2010.11.005
19.
Gruen
,
T. A.
,
McNeice
,
G. M.
, and
Amstutz
,
H. C.
,
1979
Modes of Failure” of Cemented Stem-Type Femoral Components
,”
Clin. Orthop. Relat. Res.
,
141
, pp.
17
27
.
20.
Kim
,
Y.-H.
,
Yoon
,
S.-H.
, and
Kim
,
J.-S.
,
2007
, “
Changes in the Bone Mineral Density in the Acetabulum and Proximal Femur After Cementless Total Hip Replacement
,”
J. Bone Joint Surg. Br.
,
89-B
, pp.
174
179
.10.1302/0301-620X.89B2.18634
21.
Kishida
,
Y.
,
Sugano
,
N.
,
Nishii
,
T.
,
Miki
,
H.
,
Yamaguchi
,
K.
, and
Yoshikawa
,
H.
,
2004
, “
Preservation of the Bone Mineral Density of the Femur After Surface Replacement of the Hip
,”
J. Bone Joint Surg. Br.
,
86-B
, pp.
185
189
.10.1302/0301-620X.86B2.14338
22.
Lian
,
Y.
,
Pei
,
F.
,
Yoo
,
M.
,
Cheng
,
J.
, and
Fatou
,
C.
,
2008
, “
Changes of Bone Mineral Density in Proximal Femur Following Total Hip Resurfacing Arthroplasty in Osteonecrosis of Femoral Head
,”
J. Orthop. Res.
,
26
, pp.
453
459
.10.1002/jor.20503
23.
Borg
,
H.
,
Hakulinen
,
M. A.
,
2009
, “
Restoration of Bone Mineral Density after Hip Resurfacing
,” Annual Meeting of the Swedish Orthopaedic Association (SOF), Halmstad, Sweden, Sept. 4, 2008.
24.
Malviya
,
A.
,
Ng
,
L.
,
Hashmi
,
M.
,
Rawlings
,
D.
, and
Holland
,
J. P.
,
2013
, “
Patterns of Changes in Femoral Bone Mineral Density up to Five Years After Hip Resurfacing
,”
J. Arthroplasty
,
28
, pp.
1025
1030
.10.1016/j.arth.2012.09.012
25.
de Groot
,
I. B.
,
Bussmann
,
H. J.
,
Stam
,
H. J.
, and
Verhaar
,
J. A.
,
2008
, “
Small Increase of Actual Physical Activity 6 Months After Total Hip or Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
466
, pp.
2201
2208
.10.1007/s11999-008-0315-3
26.
Daniel
,
J. T.
,
Kamali
,
A.
,
Li
,
C.
,
Hussain
,
A.
,
Pamu
,
J.
,
Counsell
,
L.
,
Zaiee
,
H.
, and
McMinn
,
D. W. J.
,
2009
, “
Step Activity Monitoring of Birmingham Hip Resurfacing Patients at Different Stages Following Operation
,”
Trans ORS
,
55
, p.
366
.
27.
Kuhn
,
M.
,
Harris-Hayes
,
M.
,
Steger-May
,
K.
,
Pashos
,
G.
, and
Clohisy
,
J. C.
,
2013
, “
Total Hip Arthroplasty in Patients 50 Years of Less. Do We Improve Activity Profiles?
J. Arthoplasty
,
28
, pp.
872
876
.10.1016/j.arth.2012.10.009
28.
Barker
,
D. S.
,
Wang
,
A. W.
,
Yeo
,
M. F.
,
Nawana
,
N. S.
,
Brumby
,
S. A.
,
Pearcy
,
M. J.
, and
Howie
,
D. W.
,
2000
, “
The Skeletal Response to Matt and Polished Cemented Femoral Stems
,”
J. Bone Joint Surg. Br.
,
82-B
, pp.
1182
1188
.10.1302/0301-620X.82B8.9864
29.
Saha
,
S.
, and
Pal
,
S.
,
1984
, “
Mechanical Properties of Bone Cement: A Review
,”
J. Biomed. Mater. Res.
,
18
, pp.
435
462
.10.1002/jbm.820180411
30.
Dickinson
,
A. S.
,
Taylor
,
A. C.
, and
Browne
,
M.
,
2012
, “
Implant-Bone Interface Healing and Adaptation in Resurfacing Hip Replacement
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
, pp.
935
947
.10.1080/10255842.2011.567269
31.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
, pp.
897
904
.10.1016/S0021-9290(03)00071-X
32.
Heller
,
M. O.
,
Bergmann
,
G.
,
Kassi
,
J.-P.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
,
2005
, “
Determination of Muscle Loading at the Hip Joint For Use in Pre-Clinical Testing
,”
J. Biomech.
,
38
, pp.
1155
1163
.10.1016/j.jbiomech.2004.05.022
33.
Wilkinson
,
J. M.
,
Peel
,
N. F. A.
,
Elson
,
R. A.
,
Stockley
,
I.
, and
Eastell
,
R.
,
2001
, “
Measuring Bone Mineral Density of the Pelvis and Proximal Femur After Total Hip Arthroplasty
,”
J. Bone Joint Surg. Br.
,
83-B
, pp.
238
288
.10.1302/0301-620X.83B2.10562
34.
Martin
,
R. B.
,
1984
, “
Porosity and Specific Surface of Bone
,”
CRC Crit. Rev. Biomed. Eng.
,
10
, pp.
179
222
.
35.
Nauenberg
,
T.
,
Bouxsein
,
M. L.
,
Mikic
,
B.
, and
Carter
,
D. R.
,
1993
, “
Using Clinical Data to Improve Bone Remodeling Theory
,”
Trans. Orthop. Res. Soc.
,
18
, p.
123
.
36.
Johnston
,
R.
,
Brand
,
R. A.
, and
Crowninshield
,
R. D.
,
1979
, “
Reconstruction of the Hip: A Mathematical Approach to Determine Optimum Geometric Relationships
,”
J. Bone Joint Surg. Am.
,
61
, pp.
639
652
.
37.
Bonnin
,
M. P.
,
Archbold
,
P. H. A.
,
Basiglini
,
L.
,
Fessy
,
M. H.
, and
Beverland
,
D. E.
,
2012
, “
Do we Medialise the Hip Centre of Rotation in Total Hip Arthroplasty? Influence of Acetabular Offset and Surgical Technique
,”
Hip International
,
22
, pp.
371
378
.10.5301/HIP.2012.9350
38.
Ajemian
,
S.
,
Thorn
,
D.
,
Clare
,
P.
,
Kaul
,
L.
,
Zernicke
,
R. F.
, and
Loitz-Ramage
,
B.
,
2004
, “
Cane-Assisted Gait Biomechanics and Electromyography After Total Hip Arthroplasty
,”
Arch. Phys. Med. Rehabil.
,
85
, pp.
1966
1971
.10.1016/j.apmr.2004.04.037
39.
Brand
,
R. A.
, and
Crowninshield
,
R. D.
,
1980
, “
The Effect of Cane Use on Hip Contact Force
,”
Clin. Orthop.
,
147
, pp.
181
184
.
40.
Digas
,
G.
, and
Kärrholm
,
J.
,
2009
, “
Five-Year DXA Study of 88 Hips With Cemented Femoral Stem
,”
Int. Orthop.
,
33
, pp.
1495
1500
.10.1007/s00264-008-0699-4
41.
Kilgus
,
D. J.
,
Shimaoka
,
E. E.
,
Tipton
,
J. S.
, and
Eberle
,
R. W.
,
1993
, “
Dual-Energy X-Ray Absorptiometry Measurement of Bone Mineral Density Around Porous-Coated Cementless Femoral Implants
,”
J. Bone Joint Surg. Br.
,
75-B
, pp.
279
287
.
42.
Aldinger
,
P. R.
,
Sabo
,
D.
,
Pritsch
,
M.
,
Thomsen
,
M.
,
Mau
,
H.
,
Ewerbeck
,
V.
, and
Breusch
,
S. J.
,
2003
, “
Pattern of Periprosthetic Bone Remodeling Around Stable Uncemented Tapered Hip Stems: A Prospective 84-Month Follow-up Study and a Median 156-Month Cross-Sectional Study With DXA
,”
Calcif. Tissue Int.
,
73
, pp.
115
121
.10.1007/s00223-002-2036-z
43.
Cohen
,
B.
, and
Rushton
,
N.
,
1995
, “
Bone Remodelling in the Proximal Femur after Charnley Total Hip Arthroplasty
,”
J. Bone Joint Surg. Br.
,
77-B
, pp.
815
819
.
44.
Li
,
M. G.
,
Rohrl
,
S. M.
,
Wood
,
D. J.
, and
Nivbrant
,
B.
,
2007
, “
Periprosthetic Changes in Bone Mineral Density in 5 Stem Designs 5 Years After Cemented Total Hip Arthroplasty. No Relation to Stem Migration
,”
J. Arthroplasty
,
22
, pp.
689
691
.10.1016/j.arth.2006.05.035
45.
Charnley
,
J.
,
Follacci
,
F. M.
, and
Hammond
,
B. T.
,
1968
, “
The Long-Term Reaction of Bone to Self-Curing Acrylic Cement
,”
J. Bone Joint Surg. Br.
,
50-B
, pp.
822
829
.
46.
Korovessis
,
P.
,
Piperos
,
G.
, and
Andreas
,
M.
,
1994
, “
Periprosthetic Bone Mineral Density after Mueller and Zweymueller Total Hip Arthroplasties
,”
Clin. Orthop. Relat. Res.
,
309
, pp.
214
221
.
47.
Speirs
,
A. D.
,
Heller
,
M. O.
,
Duda
,
G. N.
, and
Taylor
,
W. R.
,
2007
, “
Physiologically Based Boundary Conditions in Finite Element Modelling
,”
J. Biomech.
,
40
, pp.
2318
2323
.10.1016/j.jbiomech.2006.10.038
48.
Wilkinson
,
J. M.
,
Eagleton
,
A. C.
,
Stockley
,
I.
,
Peel
,
N. F. A.
,
Hamer
,
A. J.
, and
Eastell
,
R.
,
2005
, “
Effect of Pamidronate on Bone Turnover and Implant Migration After Total Hip Arthroplasty: A Randomized Trial
,”
J. Orthop. Res.
,
23
, pp.
1
8
.10.1016/j.orthres.2004.06.004
49.
Stulberg
,
B. N.
,
Fitts
,
S. M.
,
Bowen
,
A. R.
, and
Zadzilka
,
J. D.
,
2010
, “
Early Return to Function after Hip Resurfacing: Is it Better Than Contemporary Total Hip Arthroplasty
,”
J. Arthoplasty
,
25
, pp.
748
753
.10.1016/j.arth.2009.05.034
50.
Kim
,
Y.-H.
,
Kim
,
J.-S.
, and
Yoon
,
S.-H.
,
2007
, “
Long-Term Survivorship of the Charnley Elite Plus Femoral Component in Young Patients
,”
J. Bone Joint Surg. Br.
,
89-B
, p.
449
454
.10.1302/0301-620X.89B4.18665
51.
Galloway
,
F.
,
Kahnt
,
M.
,
Ramm
,
H.
,
Worsley
,
P.
,
Zachow
,
S.
,
Nair
,
P.
, and
Taylor
,
M.
,
2013
, “
A Large Scale Finite Element Study of a Cementless Osseointegrated Tibial Tray
,”
J. Biomech.
,
46
, pp.
1900
1906
.10.1016/j.jbiomech.2013.04.021
52.
Boyle
,
C.
, and
Yong Kim
,
I.
,
2011
, “
Comparison of Different Hip Prosthesis Shapes Considering Micro-Level Bone Remodeling and Stress-Shielding Criteria Using Three-Dimensional Design Space Topology Optimization
,”
J. Biomech.
,
44
, pp.
1722
1728
.10.1016/j.jbiomech.2011.03.038
53.
Kowalczyk
,
P.
,
2010
, “
Simulation of Orthotropic Microstructure Remodelling of Cancellous Bone
,”
J. Biomech.
,
43
, pp.
563
569
.10.1016/j.jbiomech.2009.09.045
54.
Jang
,
I. G.
, and
Kim
,
I. Y.
,
2010
, “
Computational Simulation of Simultaneous Cortical and Trabecular Bone Change in Human Proximal Femur During Bone Remodeling
,”
J. Biomech.
,
43
, pp.
294
301
.10.1016/j.jbiomech.2009.08.012
55.
Mulvihill
,
B. M.
, and
Prendergast
,
P. J.
,
2010
, “
Mechanobiological Regulation of the Remodelling Cycle in Trabecular Bone and Possible Biomechanical Pathways for Osteoporosis
,”
Clin. Biomech.
,
25
, pp.
491
498
.10.1016/j.clinbiomech.2010.01.006
You do not currently have access to this content.