Abstract

Prolonged anterior shear loading may contribute to disc degeneration by damaging the annulus fibrosus. To address this, annular mechanical properties were quantified following static shear loading using a porcine model. Twelve porcine cervical motion segments were dissected, with posterior bony elements removed to isolate shear to the intervertebral disc. Specimens were randomized into two conditions: (1) shear-loaded (100 N static anterior shear applied to C3/C4, n = 6) or (2) control (0 N, n = 6). Shear force was applied via a pin through C4, secured to a testing system to prevent rotation, while C3 was clamped such that anterior shear of C3 with respect to C4 resulted. Following 1 h of loading, two anterior annulus samples were extracted per specimen. The first sample underwent circumferential tensile testing, while the other was prepared for a peel test to assess interlamellar adhesion. Tensile properties in the circumferential direction remained unchanged after shear loading. However, interlamellar adhesive stiffness decreased by 52% (p = 0.02), and adhesive strength dropped by 46% (p = 0.02) in shear-loaded specimens compared to controls. Shear loading weakened the interlamellar matrix, reducing resistance to delamination and compromising disc integrity. These findings suggest that prolonged shear loading may contribute to early-stage disc damage.

References

1.
Cassidy
,
J. D.
,
Carroll
,
L. J.
, and
Côté
,
P.
,
1998
, “
The Saskatchewan Health and Back Pain Survey
,”
Spine
,
23
(
17
), pp.
1860
1866
.10.1097/00007632-199809010-00012
2.
Wu
,
A.
,
March
,
L.
,
Zheng
,
X.
,
Huang
,
J.
,
Wang
,
X.
,
Zhao
,
J.
,
Blyth
,
F. M.
,
Smith
,
E.
,
Buchbinder
,
R.
, and
Hoy
,
D.
,
2020
, “
Global Low Back Pain Prevalence and Years Lived With Disability From 1990 to 2017: Estimates From the Global Burden of Disease Study 2017
,”
Ann. Transl. Med.
,
8
(
6
), p.
299
.10.21037/atm.2020.02.175
3.
Gallagher
,
S.
, and
Marras
,
W. S.
,
2012
, “
Tolerance of the Lumbar Spine to Shear: A Review and Recommended Exposure Limits
,”
Clin. Biomech.
,
27
(
10
), pp.
973
978
.10.1016/j.clinbiomech.2012.08.009
4.
Potvin
,
J. R.
,
Norman
,
R. W.
, and
McGill
,
S. M.
,
1991
, “
Reduction in Anterior Shear Forces on the Disc by the Lumbar Musculature
,”
Clin. Biomech.
,
6
(
2
), pp.
88
96
.10.1016/0268-0033(91)90005-B
5.
Kim
,
J.
,
Yang
,
S.-J.
,
Kim
,
H.
,
Kim
,
Y.
,
Park
,
J. B.
,
DuBose
,
C.
, and
Lim
,
T.-H.
,
2012
, “
Effect of Shear Force on Intervertebral Disc (IVD) Degeneration: An In Vivo Rat Study
,”
Ann. Biomed. Eng.
,
40
(
9
), pp.
1996
2004
.10.1007/s10439-012-0570-z
6.
Xia
,
D. D.
,
Lin
,
S. L.
,
Wang
,
X. Y.
,
Wang
,
Y. L.
,
Xu
,
H. M.
,
Zhou
,
F.
, and
Tan
,
J.
,
2015
, “
Effects of Shear Force on Intervertebral Disc: An In Vivo Rabbit Study
,”
Eur. Spine J.
,
24
(
8
), pp.
1711
1719
.10.1007/s00586-015-3816-2
7.
Skrzypiec
,
D. M.
,
Nagel
,
K.
,
Sellenschloh
,
K.
,
Klein
,
A.
,
Püschel
,
K.
,
Morlock
,
M. M.
, and
Huber
,
G.
,
2016
, “
Failure of the Human Lumbar Motion-Segments Resulting From Anterior Shear Fatigue Loading
,”
Ind. Health
,
54
(
4
), pp.
308
314
.10.2486/indhealth.2015-0162
8.
Howarth
,
S. J.
, and
Callaghan
,
J. P.
,
2013
, “
Towards Establishing an Occupational Threshold for Cumulative Shear Force in the Vertebral Joint: An In Vitro Evaluation of a Risk Factor for Spondylolytic Fractures Using Porcine Specimens
,”
Clin. Biomech.
,
28
(
3
), pp.
246
254
.10.1016/j.clinbiomech.2013.01.003
9.
Gregory
,
D. E.
,
Bae
,
W. C.
,
Sah
,
R. L.
, and
Masuda
,
K.
,
2012
, “
Anular Delamination Strength of Human Lumbar Intervertebral Disc
,”
Eur. Spine J.
,
21
(
9
), pp.
1716
1723
.10.1007/s00586-012-2308-x
10.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
,
2011
, “
A Comparison of Uniaxial and Biaxial Mechanical Properties of the Annulus Fibrosus: A Porcine Model
,”
ASME J. Biomech. Eng.
,
133
(
2
), p.
024503
.10.1115/1.4003327
11.
Oxland
,
T. R.
,
Panjabi
,
M. M.
,
Southern
,
E. P.
, and
Duranceau
,
J. S.
,
1991
, “
An Anatomic Basis for Spinal Instability: A Porcine Trauma Model
,”
J. Orthop. Res.
,
9
(
3
), pp.
452
462
.10.1002/jor.1100090318
12.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
1999
, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disord.
,
12
(
5
), pp.
415
423
.10.1097/00002517-199912050-00012
13.
Schmidt
,
H.
,
Häußler
,
K.
,
Wilke
,
H.-J.
, and
Wolfram
,
U.
,
2015
, “
Structural Behavior of Human Lumbar Intervertebral Disc Under Direct Shear
,”
J. Appl. Biomater. Funct. Mater.
,
13
(
1
), pp.
66
71
.
14.
McGill
,
S. M.
,
Norman
,
R. W.
,
Yingling
,
V. R.
,
Wells
,
R. W.
, and
Neumann
,
P.
,
1998
, “
Shear Happens! Suggested Guidelines for Ergonomists to Reduce the Risk of Low Back Injury From Shear Loading
,”
Proceedings of the 30th Annual Conference of the Human Factors Association of Canada
,
Mississauga, ON, Canada
, Oct. 19--22, pp.
157
161
.https://www.researchgate.net/publication/268298574_Shear_Happens_Suggested_guidelines_for_ergonomists_to_reduce_the_risk_of_low_back_injury_from_shear_loading#:~:text=joint%20reaction%20force.?,...,60%5D%2C%20%5B61%5D%20
15.
Monaco
,
L. A.
,
DeWitte-Orr
,
S. J.
, and
Gregory
,
D. E.
,
2016
, “
A Comparison Between Porcine, Ovine, and Bovine Intervertebral Disc Anatomy and Single Lamella Annulus Fibrosus Tensile Properties
,”
J. Morphol.
,
277
(
2
), pp.
244
251
.10.1002/jmor.20492
16.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2008
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc
,”
Spine
,
33
(
6
), pp.
E166
E173
.10.1097/BRS.0b013e318166e001
17.
Skrzypiec
,
D. M.
,
Bishop
,
N. E.
,
Klein
,
A.
,
Püschel
,
K.
,
Morlock
,
M. M.
, and
Huber
,
G.
,
2013
, “
Estimation of Shear Load Sharing in Moderately Degenerated Human Lumbar Spine
,”
J. Biomech.
,
46
(
4
), pp.
651
657
.10.1016/j.jbiomech.2012.11.050
18.
Stewart
,
D. M.
,
Monaco
,
L. A.
, and
Gregory
,
D. E.
,
2017
, “
The Aging Disc: Using an Ovine Model to Examine Age-Related Differences in the Biomechanical Properties of the Intralamellar Matrix of Single Lamellae
,”
Eur. Spine J.
,
26
(
1
), pp.
259
266
.10.1007/s00586-016-4603-4
19.
Harvey-Burgess
,
M.
, and
Gregory
,
D. E.
,
2019
, “
The Effect of Axial Torsion on the Mechanical Properties of the Annulus Fibrosus
,”
Spine
,
44
(
4
), pp.
E195
E201
.10.1097/BRS.0000000000002803
20.
Ghelani
,
R. N.
,
Zwambag
,
D. P.
, and
Gregory
,
D. E.
,
2020
, “
Rapid Increase in Intradiscal Pressure Negatively Impacts Annulus Fibrosus Strength
,”
J. Biomech.
,
108
, p.
109888
.10.1016/j.jbiomech.2020.109888
21.
Briar
,
K. J.
,
McMorran
,
J. G.
, and
Gregory
,
D. E.
,
2022
, “
Delamination of the Annulus Fibrosus of the Intervertebral Disc: Using a Bovine Tail Model to Examine Effect of Separation Rate
,”
Front. Bioeng. Biotechnol.
,
10
, p.
883268
.10.3389/fbioe.2022.883268
22.
Neptune
,
A.
,
McMorran
,
J. G.
, and
Gregory
,
D. E.
,
2024
, “
How Static and Cyclic Loading Affect the Mechanical Properties of the Porcine Annulus Fibrosus
,”
ASME J. Biomech. Eng.
,
146
(
11
), p.
114503
.10.1115/1.4065841
23.
Lu
,
W. W.
,
Luk
,
K. D. K.
,
Holmes
,
A. D.
,
Cheung
,
K. M. C.
, and
Leong
,
J. C. Y.
,
2005
, “
Pure Shear Properties of Lumbar Spinal Joints and the Effect of Tissue Sectioning on Load Sharing
,”
Spine
,
30
(
8
), pp.
E204
E209
.10.1097/01.brs.0000158871.14960.30
24.
Yingling
,
V. R.
, and
McGill
,
S. M.
,
1999
, “
Mechanical Properties and Failure Mechanics of the Spine Under Posterior Shear Load: Observations From a Porcine Model
,”
J. Spinal Disord.
,
12
(
6
), pp.
501
508
.
25.
Kandil
,
K.
,
Zaïri
,
F.
,
Messager
,
T.
, and
Zaïri
,
F.
,
2020
, “
Interlamellar Matrix Governs Human Annulus Fibrosus Multiaxial Behavior
,”
Sci. Rep.
,
10
(
1
), p.
19292
.10.1038/s41598-020-74107-8
26.
Snow
,
C. R.
,
Harvey-Burgess
,
M.
,
Laird
,
B.
,
Brown
,
S. H. M.
, and
Gregory
,
D. E.
,
2018
, “
Pressure-Induced End-Plate Fracture in the Porcine Spine: Is the Annulus Fibrosus Susceptible to Damage?
,”
Eur. Spine J.
,
27
(
8
), pp.
1767
1774
.10.1007/s00586-017-5428-5
27.
Chow
,
N.
, and
Gregory
,
D. E.
,
2023
, “
The Effect of Intervertebral Disc Damage on the Mechanical Strength of the Annulus Fibrosus in the Adjacent Segment
,”
Spine J.
,
23
(
12
), pp.
1935
1940
.10.1016/j.spinee.2023.07.013
You do not currently have access to this content.