Abstract

Heart failure (HF) is a significant health threat, and the short-term percutaneous interventional left ventricular assist devices (PLVADs) play an important role in the management of it. However, studies on PLVAD blood flow patterns at varying rotational speeds are limited. Therefore, it is essential to explore the hemodynamic profiles of PLVADs under varying modes. A patient-specific model was developed, and the lumped-parameter model (LPM) was used as boundary conditions. The hemodynamic changes of PLVAD under pulsating flow (PF) and counterpulsating flow (CPF) were analyzed using computational fluid dynamics (CFD). Key parameters, including pressure, wall shear stress (WSS), oscillatory shear index (OSI), time-averaged wall shear stress (TAWSS), endothelial cell activation potential (ECAP), relative residence time (RRT), and velocity, were calculated and compared under continuous-flow (CF) condition. PLVAD support reduced afterload, and both pulsatile modes exhibited better pulsatility than CF, particularly the PF mode. In CPF mode, the native heart performed the least work, which may be more conducive to recovery. The trends for WSS, pressure, and velocity were similar across conditions, but their magnitudes varied. Overall, PLVAD support can increase TAWSS and decrease OSI, RRT, and ECAP. Although there was no significant difference in TAWSS and OSI among CF, PF, and CPF, we observed the smallest RRT for PF and the smallest ECAP for CPF. Hemodynamic data suggest that pulsatile patterns appear to reduce the risk of thrombosis and other complications compared to CF.

References

1.
Baman
,
J. R.
, and
Ahmad
,
F. S.
,
2020
, “
Heart Failure
,”
JAMA
,
324
(
10
), p.
1015
.10.1001/jama.2020.13310
2.
McDonagh
,
T. A.
,
Metra
,
M.
,
Adamo
,
M.
,
Gardner
,
R. S.
,
Baumbach
,
A.
,
Böhm
,
M.
, and
Burri
,
H.
, et al.,
2021
, “
2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure
,”
Eur. Heart J.
,
42
(
36
), pp.
3599
3726
.10.1093/eurheartj/ehab368
3.
Kirklin
,
J. K.
,
Naftel
,
D. C.
,
Kormos
,
R. L.
,
Stevenson
,
L. W.
,
Pagani
,
F. D.
,
Miller
,
M. A.
,
Ulisney
,
K. L.
,
Baldwin
,
J. T.
, and
Young
,
J. B.
,
2011
, “
Third INTERMACS Annual Report: The Evolution of Destination Therapy in the United States
,”
J. Heart Lung Transplant.: Off. Publ. Int. Soc. Heart Transplant.
,
30
(
2
), pp.
115
123
.10.1016/j.healun.2010.12.001
4.
Slaughter
,
M. S.
,
Pagani
,
F. D.
,
Rogers
,
J. G.
,
Miller
,
L. W.
,
Sun
,
B.
,
Russell
,
S. D.
, and
Starling
,
R. C.
, et al.,
2010
, “
Clinical Management of Continuous-Flow Left Ventricular Assist Devices in Advanced Heart Failure
,”
J. Heart Lung Transplant.: Off. Publ. Int. Soc. Heart Transplant.
,
29
(
4
), pp.
S1
S39
.10.1016/j.healun.2010.01.011
5.
Kurihara
,
C.
,
Kawabori
,
M.
,
Sugiura
,
T.
,
Critsinelis
,
A. C.
,
Wang
,
S.
,
Cohn
,
W. E.
,
Civitello
,
A. B.
,
Frazier
,
O. H.
, and
Morgan
,
J. A.
,
2018
, “
Bridging to a Long-Term Ventricular Assist Device With Short-Term Mechanical Circulatory Support
,”
Artif. Organs
,
42
(
6
), pp.
589
596
.10.1111/aor.13112
6.
Lima
,
B.
,
Kale
,
P.
,
Gonzalez-Stawinski
,
G. V.
,
Kuiper
,
J. J.
,
Carey
,
S.
, and
Hall
,
S. A.
,
2016
, “
Effectiveness and Safety of the Impella 5.0 as a Bridge to Cardiac Transplantation or Durable Left Ventricular Assist Device
,”
Am. J. Cardiol.
,
117
(
10
), pp.
1622
1628
.10.1016/j.amjcard.2016.02.038
7.
Shah
,
P.
,
Smith
,
S.
,
Haft
,
J. W.
,
Desai
,
S. S.
,
Burton
,
N. A.
,
Romano
,
M. A.
,
Aaronson
,
K. D.
,
Pagani
,
F. D.
, and
Cowger
,
J. A.
,
2016
, “
Clinical Outcomes of Advanced Heart Failure Patients With Cardiogenic Shock Treated With Temporary Circulatory Support Before Durable LVAD Implant
,”
ASAIO J. (Am. Soc. Artif. Intern. Organs: 1992)
,
62
(
1
), pp.
20
27
.10.1097/MAT.0000000000000309
8.
Wang
,
Y.
,
Wang
,
J.
,
Peng
,
J.
,
Huo
,
M.
,
Yang
,
Z.
,
Giridharan
,
G. A.
,
Luan
,
Y.
, and
Qin
,
K.
,
2021
, “
Effects of a Short-Term Left Ventricular Assist Device on Hemodynamics in a Heart Failure Patient-Specific Aorta Model: A CFD Study
,”
Front. Physiol.
,
12
, p.
733464
.10.3389/fphys.2021.733464
9.
Ji
,
B.
, and
Undar
,
A.
,
2006
, “
An Evaluation of the Benefits of Pulsatile Versus Nonpulsatile Perfusion During Cardiopulmonary Bypass Procedures in Pediatric and Adult Cardiac Patients
,”
ASAIO J. (Am. Soc. Artif. Intern. Organs: 1992)
,
52
(
4
), pp.
357
361
.10.1097/01.mat.0000225266.80021.9b
10.
Vandenberghe
,
S.
,
Segers
,
P.
,
Meyns
,
B.
, and
Verdonck
,
P.
,
2003
, “
Unloading Effect of a Rotary Blood Pump Assessed by Mathematical Modeling
,”
Artif. Organs
,
27
(
12
), pp.
1094
1101
.10.1111/j.1525-1594.2003.07198.x
11.
Tan
,
Z.
,
Huo
,
M.
,
Qin
,
K.
,
El-Baz
,
A. S.
,
Sethu
,
P.
,
Wang
,
Y.
, and
Giridharan
,
G. A.
,
2023
, “
A Sensorless, Physiologic Feedback Control Strategy to Increase Vascular Pulsatility for Rotary Blood Pumps
,”
Biomed. Signal Process. Control
,
83
, p.
104640
.10.1016/j.bspc.2023.104640
12.
Wang
,
Y.
,
Peng
,
J.
,
Qin
,
K.
,
Rodefeld
,
M. D.
,
Luan
,
Y.
, and
Giridharan
,
G. A.
,
2021
, “
Control Strategy to Enhance Pulmonary Vascular Pulsatility for Implantable Cavopulmonary Assist Devices: A Simulation Study
,”
Biomed. Signal Process. Control
,
70
, p.
103008
.10.1016/j.bspc.2021.103008
13.
Huang
,
F.
,
Gou
,
Z.
,
Fu
,
Y.
, and
Ruan
,
X.
,
2018
, “
Effects on the Pulmonary Hemodynamics and Gas Exchange With a Speed Modulated Right Ventricular Assist Rotary Blood Pump: A Numerical Study
,”
Biomed. Eng. Online
,
17
(
1
), p.
142
.10.1186/s12938-018-0591-4
14.
Ng
,
B. C.
,
Kleinheyer
,
M.
,
Smith
,
P. A.
,
Timms
,
D.
,
Cohn
,
W. E.
, and
Lim
,
E.
,
2018
, “
Pulsatile Operation of a Continuous-Flow Right Ventricular Assist Device (RVAD) to Improve Vascular Pulsatility
,”
PLoS One
,
13
(
4
), p.
e0195975
.10.1371/journal.pone.0195975
15.
Pauls
,
J. P.
,
Stevens
,
M. C.
,
Bartnikowski
,
N.
,
Fraser
,
J. F.
,
Gregory
,
S. D.
, and
Tansley
,
G.
,
2016
, “
Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study
,”
Ann. Biomed. Eng.
,
44
(
8
), pp.
2377
2387
.10.1007/s10439-016-1552-3
16.
Bozkurt
,
S.
,
van Tuijl
,
S.
,
Schampaert
,
S.
,
van de Vosse
,
F. N.
, and
Rutten
,
M. C.
,
2014
, “
Arterial Pulsatility Improvement in a Feedback-Controlled Continuous Flow Left Ventricular Assist Device: An Ex-Vivo Experimental Study
,”
Med. Eng. Phys.
,
36
(
10
), pp.
1288
1295
.10.1016/j.medengphy.2014.07.005
17.
Naito
,
N.
,
Nishimura
,
T.
,
Iizuka
,
K.
,
Takewa
,
Y.
,
Umeki
,
A.
,
Ando
,
M.
,
Ono
,
M.
, and
Tatsumi
,
E.
,
2018
, “
Rotational Speed Modulation Used With Continuous-Flow Left Ventricular Assist Device Provides Good Pulsatility
,”
Interact. Cardiovasc. Thorac. Surg.
,
26
(
1
), pp.
119
123
.10.1093/icvts/ivx236
18.
Naito
,
N.
,
Mizuno
,
T.
,
Nishimura
,
T.
,
Kishimoto
,
S.
,
Takewa
,
Y.
,
Eura
,
Y.
, and
Kokame
,
K.
, et al.,
2016
, “
Influence of a Rotational Speed Modulation System Used With an Implantable Continuous-Flow Left Ventricular Assist Device on Von Willebrand Factor Dynamics
,”
Artif. Organs
,
40
(
9
), pp.
877
883
.10.1111/aor.12666
19.
Fukamachi
,
K.
,
Karimov
,
J. H.
,
Sunagawa
,
G.
,
Horvath
,
D. J.
,
Byram
,
N.
,
Kuban
,
B. D.
,
Dessoffy
,
R.
,
Sale
,
S.
,
Golding
,
L. A. R.
, and
Moazami
,
N.
,
2017
, “
Generating Pulsatility by Pump Speed Modulation With Continuous-Flow Total Artificial Heart in Awake Calves
,”
J. Artif. Organs: Off. J. Jpn. Soc. Artif. Organs
,
20
(
4
), pp.
381
385
.10.1007/s10047-017-0958-5
20.
Huo
,
M.
,
Giridharan
,
G. A.
,
Sethu
,
P.
,
Qu
,
P.
,
Qin
,
K.
, and
Wang
,
Y.
,
2024
, “
Numerical Simulation Analysis of Multi-Scale Computational Fluid Dynamics on Hemodynamic Parameters Modulated by Pulsatile Working Modes for the Centrifugal and Axial Left Ventricular Assist Devices
,”
Comput. Biol. Med.
,
169
, p.
107788
.10.1016/j.compbiomed.2023.107788
21.
Annamalai
,
S. K.
,
Esposito
,
M. L.
,
Reyelt
,
L. A.
,
Natov
,
P.
,
Jorde
,
L. E.
,
Karas
,
R. H.
, and
Kapur
,
N. K.
,
2018
, “
Abdominal Positioning of the Next-Generation Intra-Aortic Fluid Entrainment Pump (Aortix) Improves Cardiac Output in a Swine Model of Heart Failure
,”
Circ.: Heart Failure
,
11
(
8
), p.
e005115
.10.1161/CIRCHEARTFAILURE.118.005115
22.
Li
,
Y.
,
Wang
,
H.
,
Xi
,
Y.
,
Sun
,
A.
,
Deng
,
X.
,
Chen
,
Z.
, and
Fan
,
Y.
,
2022
, “
Multi-Indicator Analysis of Mechanical Blood Damage With Five Clinical Ventricular Assist Devices
,”
Comput. Biol. Med.
,
151
(
Pt. A
), p.
106271
.10.1016/j.compbiomed.2022.106271
23.
Li
,
Y.
,
Yu
,
J.
,
Wang
,
H.
,
Xi
,
Y.
,
Deng
,
X.
,
Chen
,
Z.
, and
Fan
,
Y.
,
2022
, “
Investigation of the Influence of Blade Configuration on the Hemodynamic Performance and Blood Damage of the Centrifugal Blood Pump
,”
Artif. Organs
,
46
(
9
), pp.
1817
1832
.10.1111/aor.14265
24.
Semenzin
,
C. S.
,
Simpson
,
B.
,
Gregory
,
S. D.
, and
Tansley
,
G.
,
2021
, “
Validated Guidelines for Simulating Centrifugal Blood Pumps
,”
Cardiovasc. Eng. Technol.
,
12
(
3
), pp.
273
285
.10.1007/s13239-021-00531-0
25.
Karmonik
,
C.
,
Partovi
,
S.
,
Loebe
,
M.
,
Schmack
,
B.
,
Weymann
,
A.
,
Lumsden
,
A. B.
,
Karck
,
M.
, and
Ruhparwar
,
A.
,
2014
, “
Computational Fluid Dynamics in Patients With Continuous-Flow Left Ventricular Assist Device Support Show Hemodynamic Alterations in the Ascending Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
147
(
4
), pp.
1326
1333.e1321
.10.1016/j.jtcvs.2013.09.069
26.
Karmonik
,
C.
,
Partovi
,
S.
,
Schmack
,
B.
,
Weymann
,
A.
,
Loebe
,
M.
,
Noon
,
G. P.
,
Piontek
,
P.
,
Karck
,
M.
,
Lumsden
,
A. B.
, and
Ruhparwar
,
A.
,
2014
, “
Comparison of Hemodynamics in the Ascending Aorta Between Pulsatile and Continuous Flow Left Ventricular Assist Devices Using Computational Fluid Dynamics Based on Computed Tomography Images
,”
Artif. Organs
,
38
(
2
), pp.
142
148
.10.1111/aor.12132
27.
Esmaily Moghadam
,
M.
,
Vignon-Clementel
,
I. E.
,
Figliola
,
R.
, and
Marsden
,
A. L.
,
2013
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
,
244
, pp.
63
79
.10.1016/j.jcp.2012.07.035
28.
Gharahi
,
H.
,
Zambrano
,
B. A.
,
Zhu
,
D. C.
,
DeMarco
,
J. K.
, and
Baek
,
S.
,
2016
, “
Computational Fluid Dynamic Simulation of Human Carotid Artery Bifurcation Based on Anatomy and Volumetric Blood Flow Rate Measured With Magnetic Resonance Imaging
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
8
(
1
), pp.
46
60
.10.1007/s12572-016-0161-6
29.
Brown
,
A. L.
,
Salvador
,
M.
,
Shi
,
L.
,
Pfaller
,
M. R.
,
Hu
,
Z.
,
Harold
,
K. E.
,
Hsiai
,
T.
,
Vedula
,
V.
, and
Marsden
,
A. L.
,
2024
, “
A Modular Framework for Implicit 3D-0D Coupling in Cardiac Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
421
, p.
116764
.10.1016/j.cma.2024.116764
30.
Kwon
,
S. S.
,
Chung
,
E. C.
,
Park
,
J. S.
,
Kim
,
G. T.
,
Kim
,
J. W.
,
Kim
,
K. H.
,
Shin
,
E. S.
, and
Shim
,
E. B.
,
2014
, “
A Novel Patient-Specific Model to Compute Coronary Fractional Flow Reserve
,”
Prog. Biophys. Mol. Biol.
,
116
(
1
), pp.
48
55
.10.1016/j.pbiomolbio.2014.09.003
31.
Mazzitelli
,
R.
,
Boyle
,
F.
,
Murphy
,
E. A.
,
Renzulli
,
A.
,
Fragomeni
,
G. J. B.
, and
Engineering
,
B.
,
2016
, “
Numerical Prediction of the Effect of Aortic Left Ventricular Assist Device Outflow-Graft Anastomosis Location
,”
Biocybern. Biomed. Eng.
,
36
(
2
), pp.
327
343
.10.1016/j.bbe.2016.01.005
32.
Yoshida
,
S.
,
Toda
,
K.
,
Miyagawa
,
S.
,
Yoshikawa
,
Y.
,
Hata
,
H.
,
Yoshioka
,
D.
,
Kainuma
,
S.
, et al.,
2020
, “
Impact of Turbulent Blood Flow in the Aortic Root on De Novo Aortic Insufficiency During Continuous-Flow Left Ventricular-Assist Device Support
,”
Artif. Organs
,
44
(
8
), pp.
883
891
.10.1111/aor.13671
33.
Roberts
,
N.
,
Chandrasekaran
,
U.
,
Das
,
S.
,
Qi
,
Z.
, and
Corbett
,
S.
,
2020
, “
Hemolysis Associated With Impella Heart Pump Positioning: In Vitro Hemolysis Testing and Computational Fluid Dynamics Modeling
,”
Int. J. Artif. Organs
,
43
(
11
), pp.
710
718
.10.1177/0391398820909843
34.
Nezami
,
F. R.
,
Khodaee
,
F.
,
Edelman
,
E. R.
, and
Keller
,
S. P.
,
2021
, “
A Computational Fluid Dynamics Study of the Extracorporeal Membrane Oxygenation-Failing Heart Circulation
,”
ASAIO J. (Am. Soc. Artif. Intern. Organs: 1992)
,
67
(
3
), pp.
276
283
.10.1097/MAT.0000000000001221
35.
Pedley
,
T. J.
,
1980
,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University Press
,
Cambridge, UK
.
36.
Berger
,
S. A.
, and
Jou
,
L.-D.
,
2000
, “
Flows in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
347
382
.10.1146/annurev.fluid.32.1.347
37.
Yin
,
A.
,
Wen
,
B.
,
Cao
,
Z.
,
Xie
,
Q.
, and
Dai
,
M.
,
2023
, “
Regurgitation During the Fully Supported Condition of the Percutaneous Left Ventricular Assist Device
,”
Physiol. Meas.
,
44
(
9
), p.
095005
.10.1088/1361-6579/acd3d0
38.
Di Achille
,
P.
,
Tellides
,
G.
,
Figueroa
,
C.
, and
Humphrey
,
J.
,
2014
, “
A Haemodynamic Predictor of Intraluminal Thrombus Formation in Abdominal Aortic Aneurysms
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
470
, p.
20140163
.10.1098/rspa.2014.0163
39.
Bartoli
,
C. R.
,
Giridharan
,
G. A.
,
Litwak
,
K. N.
,
Sobieski
,
M.
,
Prabhu
,
S. D.
,
Slaughter
,
M. S.
, and
Koenig
,
S. C.
,
2010
, “
Hemodynamic Responses to Continuous Versus Pulsatile Mechanical Unloading of the Failing Left Ventricle
,”
ASAIO J. (Am. Soc. Artif. Intern. Organs: 1992)
,
56
(
5
), pp.
410
416
.10.1097/MAT.0b013e3181e7bf3c
40.
Gu
,
K.
,
Gao
,
B.
,
Chang
,
Y.
, and
Zeng
,
Y.
,
2016
, “
Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) Has Better Hemodynamic Effects on the Aorta Than Constant Speed Mode: A Primary Numerical Study
,”
Med. Sci. Monit.: Int. Med. J. Exp. Clin. Res.
,
22
, pp.
2284
2294
.10.12659/MSM.896291
41.
Cho
,
S. M.
,
Moazami
,
N.
,
Katz
,
S.
,
Bhimraj
,
A.
,
Shrestha
,
N. K.
, and
Frontera
,
J. A.
,
2019
, “
Stroke Risk Following Infection in Patients With Continuous-Flow Left Ventricular Assist Device
,”
Neurocrit. Care
,
31
(
1
), pp.
72
80
.10.1007/s12028-018-0662-1
42.
Hasin
,
T.
,
Matsuzawa
,
Y.
,
Guddeti
,
R. R.
,
Aoki
,
T.
,
Kwon
,
T. G.
,
Schettle
,
S.
,
Lennon
,
R. J.
,
Chokka
,
R. G.
,
Lerman
,
A.
, and
Kushwaha
,
S. S.
,
2015
, “
Attenuation in Peripheral Endothelial Function After Continuous Flow Left Ventricular Assist Device Therapy Is Associated With Cardiovascular Adverse Events
,”
Circ. J.: Off. J. Jpn. Circ. Soc.
,
79
(
4
), pp.
770
777
.10.1253/circj.CJ-14-1079
43.
Thury
,
A.
,
Wentzel
,
J. J.
,
Vinke
,
R. V.
,
Gijsen
,
F. J.
,
Schuurbiers
,
J. C.
,
Krams
,
R.
,
de Feyter
,
P. J.
,
Serruys
,
P. W.
, and
Slager
,
C. J.
,
2002
, “
Images in Cardiovascular Medicine. Focal In-Stent Restenosis Near Step-Up: Roles of Low and Oscillating Shear Stress?
,”
Circulation
,
105
(
23
), p.
e185–e187
.10.1161/01.CIR.0000018282.32332.13
44.
Mutlu
,
O.
,
Salman
,
H. E.
,
Al-Thani
,
H.
,
El-Menyar
,
A.
,
Qidwai
,
U. A.
, and
Yalcin
,
H. C.
,
2023
, “
How Does Hemodynamics Affect Rupture Tissue Mechanics in Abdominal Aortic Aneurysm: Focus on Wall Shear Stress Derived Parameters, Time-Averaged Wall Shear Stress, Oscillatory Shear Index, Endothelial Cell Activation Potential, and Relative Residence Time
,”
Comput. Biol. Med.
,
154
, p.
106609
.10.1016/j.compbiomed.2023.106609
45.
Chen
,
Y.
,
Yang
,
Y.
,
Tan
,
W.
,
Fu
,
L.
,
Deng
,
X.
, and
Xing
,
Y.
,
2021
, “
Hemodynamic Effects of the Human Aorta Arch With Different Inflow Rate Waveforms From the Ascending Aorta Inlet: A Numerical Study
,”
Biorheology
,
58
(
1–2
), pp.
27
38
.10.3233/BIR-201009
46.
Belkacemi
,
D.
,
Tahar Abbes
,
M.
,
Al-Rawi
,
M.
,
Al-Jumaily
,
A. M.
,
Bachene
,
S.
, and
Laribi
,
B.
,
2023
, “
Intraluminal Thrombus Characteristics in AAA Patients: Non-Invasive Diagnosis Using CFD
,”
Bioengineering (Basel, Switzerland)
,
10
(
5
), p.
540
.10.3390/bioengineering10050540
47.
Caruso
,
M. V.
,
Gramigna
,
V.
,
Rossi
,
M.
,
Serraino
,
G. F.
,
Renzulli
,
A.
, and
Fragomeni
,
G.
,
2014
, “
A Computational Fluid Dynamics Comparison Between Different Outflow Graft Anastomosis Locations of Left Ventricular Assist Device (LVAD) in a Patient-Specific Aortic Model
,”
Int. J. Numer. Methods Biomed. Eng.
,
31
(
2
), p. e02700.10.1002/cnm.2700
48.
Caruso
,
M. V.
,
Gramigna
,
V.
,
Renzulli
,
A.
, and
Fragomeni
,
G.
,
2016
, “
Computational Analysis of Aortic Hemodynamics During Total and Partial Extracorporeal Membrane Oxygenation and Intra-Aortic Balloon Pump Support
,”
Acta Bioeng. Biomech.
,
18
(
3
), pp.
3
9
.10.5277/ABB-00366-2015-03
You do not currently have access to this content.