Abstract

To quantify the contributions of specific ligaments to overall joint movement, the principle of superposition has been used for nearly 30 years. This principle relies on using a robotic test system to move a biological joint to the same position before and after transecting a specific ligament. The resulting difference in joint forces is assumed to be the transected ligament's tension. However, the robotic test system's ability to accurately return the joint to the commanded pose is dependent on the compliance of the system's various components, which is often neglected. Accordingly, there were three objectives in this paper: (1) Explain the influence of system compliance on positioning error in superposition testing with a mathematical model, (2) Quantify the compliance of components within the robotic test system, and (3) Provide a framework to evaluate uncertainty in published superposition based in situ force measurements and demonstrate their implications on published anterior cruciate ligament (ACL) forces. A system stiffness model (SSM) was derived to explain that compliance of test system components will cause the superposition method to underestimate ligament tension and stiffness. Based on typical test system component and joint stiffness ranges measured in this study, it was determined that with decreasing robot and/or bone stiffness, or increasing joint stiffness values, ligament load error could increase to values greater than 50%. Results indicate that experimentalists should (1) maximize test system component stiffness relative to joint stiffness and/or (2) compensate for compliance induced deflection of the test system components.

References

1.
Fujie
,
H.
,
Mabuchi
,
K.
,
Woo
,
S. L.
,
Livesay
,
G. A.
,
Arai
,
S.
, and
Tsukamoto
,
Y.
,
1993
, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
ASME J. Biomech. Eng.
,
115
(
3
), pp.
211
217
.10.1115/1.2895477
2.
Livesay
,
G. A.
,
Fujie
,
H.
,
Kashiwaguchi
,
S.
,
Morrow
,
D. A.
,
Fu
,
F. H.
, and
Woo
,
S. L.-Y.
,
1995
, “
Determination of the in Situ Forces and Force Distribution Within the Human Anterior Cruciate Ligament
,”
Ann. Biomed. Eng.
,
23
(
4
), pp.
467
474
.10.1007/BF02584446
3.
Fujie
,
H.
,
Livesay
,
G. A.
,
Woo
,
S. L.
,
Kashiwaguchi
,
S.
, and
Blomstrom
,
G.
,
1995
, “
The Use of a Universal Force-Moment Sensor to Determine in-Situ Forces in Ligaments: A New Methodology
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
1
7
.10.1115/1.2792266
4.
Rudy
,
T.
,
Livesay
,
G.
,
Woo
,
S.-Y.
, and
Fu
,
F.
,
1996
, “
A Combined Robotic/Universal Force Sensor Approach to Determine in Situ Forces of Knee Ligaments
,”
J. Biomech.
,
29
(
10
), pp.
1357
1360
.10.1016/0021-9290(96)00056-5
5.
Stone
,
J. D.
,
Carlin
,
G. J.
,
Ishibashi
,
Y.
,
Harner
,
C. D.
, and
Woo
,
S. L.-Y.
,
1996
, “
Assessment of Posterior Cruciate Ligament Graft Performance Using Robotic Technology
,”
Am. J. Sports Med.
,
24
(
6
), pp.
824
828
.10.1177/036354659602400619
6.
Imhauser
,
C. W.
,
Kent
,
R. N.
, III
,
Boorman-Padgett
,
J.
,
Thein
,
R.
,
Wickiewicz
,
T. L.
, and
Pearle
,
A. D.
,
2017
, “
New Parameters Describing How Knee Ligaments Carry Force in Situ Predict Interspecimen Variations in Laxity During Simulated Clinical Exams
,”
J. Biomech.
,
64
, pp.
212
218
.10.1016/j.jbiomech.2017.09.032
7.
Cone
,
S. G.
,
Piedrahita
,
J. A.
,
Spang
,
J. T.
, and
Fisher
,
M. B.
,
2019
, “
In Situ Joint Stiffness Increases During Skeletal Growth but Decreases Following Partial and Complete Anterior Cruciate Ligament Injury
,”
ASME J. Biomech. Eng.
,
141
(
12
), p.
121001
.10.1115/1.4044582
8.
Kent
,
R. N.
,
Imhauser
,
C. W.
,
Thein
,
R.
,
Marom
,
N.
,
Wickiewicz
,
T. L.
,
Nawabi
,
D. H.
, and
Pearle
,
A. D.
,
2020
, “
Engagement of the Secondary Ligamentous and Meniscal Restraints Relative to the Anterior Cruciate Ligament Predicts Anterior Knee Laxity
,”
Am. J. Sports Med.
,
48
(
1
), pp.
109
116
.10.1177/0363546519888488
9.
Howe
,
D.
,
Cone
,
S. G.
,
Piedrahita
,
J. A.
,
Collins
,
B.
,
Fordham
,
L. A.
,
Griffith
,
E. H.
,
Spang
,
J. T.
, and
Fisher
,
M. B.
,
2021
, “
Sex-Specific Function and Morphology of the Anterior Cruciate Ligament During Skeletal Growth in a Porcine Model
,”
bioRxiv
.https://www.biorxiv.org/content/10.1101/2021.05.10.442986v1.full.pdf
10.
Wu
,
J.-L.
,
Seon
,
J. K.
,
Gadikota
,
H. R.
,
Hosseini
,
A.
,
Sutton
,
K. M.
,
Gill
,
T. J.
, and
Li
,
G.
,
2010
, “
In Situ Forces in the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament Under Simulated Functional Loading Conditions
,”
Am. J. Sports Med.
,
38
(
3
), pp.
558
563
.10.1177/0363546509350110
11.
Thein
,
R.
,
Boorman-Padgett
,
J.
,
Stone
,
K.
,
Wickiewicz
,
T. L.
,
Imhauser
,
C. W.
, and
Pearle
,
A. D.
,
2016
, “
Biomechanical Assessment of the Anterolateral Ligament of the Knee: A Secondary Restraint in Simulated Tests of the Pivot Shift and of Anterior Stability
,”
JBJS
,
98
(
11
), pp.
937
943
.10.2106/JBJS.15.00344
12.
Fox
,
R. J.
,
Harner
,
C. D.
,
Sakane
,
M.
,
Carlin
,
G. J.
, and
Woo
,
S. L.
,
1998
, “
Determination of the in Situ Forces in the Human Posterior Cruciate Ligament Using Robotic Technology
,”
Am. J. Sports Med.
,
26
(
3
), pp.
395
401
.10.1177/03635465980260030901
13.
Fujie
,
H.
,
Sekito
,
T.
, and
Orita
,
A.
,
2004
, “
A Novel Robotic System for Joint Biomechanical Tests: Application to the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
54
61
.10.1115/1.1644567
14.
Noble
,
L. D.
, Jr.
,
Colbrunn
,
R. W.
,
Lee
,
D.-G.
,
Van Den Bogert
,
A. J.
, and
Davis
,
B. L.
,
2010
, “
Design and Validation of a General Purpose Robotic Testing System for Musculoskeletal Applications
,”
J. Biomech. Eng.
, 132(2), p.
025001
.10.1115/1.4000851
15.
Aubin
,
P. M.
,
Cowley
,
M. S.
, and
Ledoux
,
W. R.
,
2008
, “
Gait Simulation Via a 6-DOF Parallel Robot With Iterative Learning Control
,”
IEEE Trans. Biomed. Eng.
,
55
(
3
), pp.
1237
1240
.10.1109/TBME.2007.908072
16.
Sakane
,
M.
,
Livesay
,
G. A.
,
Fox
,
R. J.
,
Rudy
,
T. W.
,
Runco
,
T. J.
, and
Woo
,
S. L. Y.
,
1999
, “
Relative Contribution of the ACL, MCL, and Bony Contact to the Anterior Stability of the Knee
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
7
(
2
), pp.
93
97
.10.1007/s001670050128
17.
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2000
, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
,
33
(
3
), pp.
279
288
.10.1016/S0021-9290(99)00186-4
18.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
,
1996
, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
,
29
(
4
), pp.
525
535
.10.1016/0021-9290(95)00084-4
19.
Gardner
,
M. P.
,
Chong
,
A. C.
,
Pollock
,
A. G.
, and
Wooley
,
P. H.
,
2010
, “
Mechanical Evaluation of Large-Size Fourth-Generation Composite Femur and Tibia Models
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
613
620
.10.1007/s10439-009-9887-7
20.
Heiner
,
A. D.
, and
Brown
,
T. D.
,
2001
, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
,
34
(
6
), pp.
773
781
.10.1016/S0021-9290(01)00015-X
21.
Erdemir
,
A.
,
2015
, “
Open Knee: Open Source Modeling and Simulation in Knee Biomechanics
,”
J. Knee Surg.
,
29
(
2
), pp.
107
116
.
22.
Gillespie
,
C. M.
,
Arant
,
L. R.
,
Roth
,
J. D.
, and
Colbrunn
,
R. W.
,
2024
, “
Sensor Fusion Algorithm to Improve Accuracy of Robotic Superposition Testing Using 6-DOF Position Sensors
,”
bioRxiv
.https://www.biorxiv.org/content/10.1101/2024.12.16.627751v1.full.pdf
23.
Wu
,
K.
,
Li
,
J.
,
Zhao
,
H.
, and
Zhong
,
Y.
,
2022
, “
Review of Industrial Robot Stiffness Identification and Modelling
,”
Appl. Sci.
,
12
(
17
), p.
8719
.10.3390/app12178719
24.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2005
, “
Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
554
564
.10.1109/TRO.2004.842347
25.
Gillespie
,
C. M.
,
Colbrunn
,
R. W.
, and
Nagle
,
T. F.
,
2023
, “
Compliance Correction in a Robotic System
,”
U.S. Patent No. 11745341B2
.https://patents.google.com/patent/US11745341B2/en
You do not currently have access to this content.