Abstract

Six-degree-of-freedom robotic testing is used to gain insight into knee function by measuring the biomechanics of cadaveric knees. However, it can be challenging to use cadaveric knees to validate robotic testing methodologies and to compare methodologies across laboratories because cadavers have variable properties and require lengthy preparation. Therefore, our primary objective was to develop a modular, mechanical knee model for robotic testing with comparable biomechanics to those of human cadaveric knees. A secondary objective was to use the knee model to benchmark the errors in ligament tensions measured using the superposition method, which is a common robotic testing workflow to determine in situ ligament tensions. We designed a knee model consisting of femur and tibia components that are constrained by their articular geometries and by ligament phantoms. We used our robotic testing system to measure the kinetic–kinematic relationships under anterior–posterior, varus–valgus, and internal–external rotation loading in four knee models with different design features. We achieved variable kinetic–kinematic relationships across the knee models by tensioning secondary restraints, altering the engagement of the ligament phantoms, and incorporating osteoarthritic features. The knee models had comparable laxities to cadaveric knees, although most knee models did not capture the flexion-dependent kinematics of cadaveric knees. We also found comparable errors in superposition-computed tensions in the lateral collateral ligament between the knee models and cadaveric knees. Therefore, the knee model is a biomechanically representative specimen that can be a valuable tool for developing and validating robotic testing methodologies.

References

1.
Cartner
,
J. L.
,
Hartsell
,
Z. M.
,
Ricci
,
W. M.
, and
Tornetta
,
P. I.
,
2011
, “
Can We Trust Ex Vivo Mechanical Testing of Fresh–Frozen Cadaveric Specimens? The Effect of Postfreezing Delays
,”
J. Orthop. Trauma
,
25
(
8
), pp.
459
461
.10.1097/BOT.0b013e318225b875
2.
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
,
2001
, “
Altering Ligament Water Content Affects Ligament Pre-Stress and Creep Behaviour
,”
J. Orthop. Res.
,
19
(
5
), pp.
845
851
.10.1016/S0736-0266(01)00005-5
3.
Lansdown
,
D. A.
,
Riff
,
A. J.
,
Meadows
,
M.
,
Yanke
,
A. B.
, and
Bach
,
B. R. J.
,
2017
, “
What Factors Influence the Biomechanical Properties of Allograft Tissue for ACL Reconstruction? A Systematic Review
,”
Clin. Orthop. Relat. Res.
,
475
(
10
), pp.
2412
2426
.10.1007/s11999-017-5330-9
4.
Huang
,
H.
,
Zhang
,
J.
,
Sun
,
K.
,
Zhang
,
X.
, and
Tian
,
S.
,
2011
, “
Effects of Repetitive Multiple Freeze–Thaw Cycles on the Biomechanical Properties of Human Flexor Digitorum Superficialis and Flexor Pollicis Longus Tendons
,”
Clin. Biomech.
,
26
(
4
), pp.
419
423
.10.1016/j.clinbiomech.2010.12.006
5.
Roth
,
J. D.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2015
, “
The Limits of Passive Motion Are Variable Between and Unrelated Within Normal Tibiofemoral Joints
,”
J. Orthop. Res.
,
33
(
11
), pp.
1594
1602
.10.1002/jor.22926
6.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
(
9
), pp.
705
720
.10.1016/0021-9290(88)90280-1
7.
Cone
,
S. G.
,
Lambeth
,
E. P.
,
Piedrahita
,
J. A.
,
Spang
,
J. T.
, and
Fisher
,
M. B.
,
2020
, “
Joint Laxity Varies in Response to Partial and Complete Anterior Cruciate Ligament Injuries Throughout Skeletal Growth
,”
J. Biomech.
,
101
, p.
109636
.10.1016/j.jbiomech.2020.109636
8.
Allaire
,
R.
,
Muriuki
,
M.
,
Gilbertson
,
L.
, and
Harner
,
C. D.
,
2008
, “
Biomechanical Consequences of a Tear of the Posterior Root of the Medial Meniscus: Similar to Total Meniscectomy
,”
JBJS
,
90
(
9
), pp.
1922
1931
.10.2106/JBJS.G.00748
9.
Zhang
,
Q.
,
Adam
,
N. C.
,
Hosseini Nasab
,
S. H.
,
Taylor
,
W. R.
, and
Smith
,
C. R.
,
2021
, “
Techniques for In Vivo Measurement of Ligament and Tendon Strain: A Review
,”
Ann. Biomed. Eng.
,
49
(
1
), pp.
7
28
.10.1007/s10439-020-02635-5
10.
Bennett
,
K. J.
,
Foroutan
,
P.
,
Fairweather
,
E.
,
Al-Dirini
,
R. M. A.
,
Sobey
,
S. A.
,
Litchfield
,
N.
,
Roe
,
M.
,
Reynolds
,
K. J.
,
Costi
,
J. J.
, and
Taylor
,
M.
,
2024
, “
Development and Validation of a Biomechanically Fidelic Surgical Training Knee Model
,”
J. Orthop. Res.
,
42
(
10
), pp.
2181
2188
.10.1002/jor.25873
11.
Walker
,
P. S.
,
2015
, “
The Design and Pre-Clinical Evaluation of Knee Replacements for Osteoarthritis
,”
J. Biomech.
,
48
(
5
), pp.
742
749
.10.1016/j.jbiomech.2014.12.012
12.
Fujie
,
H.
,
Livesay
,
G. A.
,
Woo
,
S. L.
,
Kashiwaguchi
,
S.
, and
Blomstrom
,
G.
,
1995
, “
The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
1
7
.10.1115/1.2792266
13.
Arant
,
L. R.
, and
Roth
,
J. D.
,
2025
, “
Alternative Robotic Control Methods That Account for System Compliance Decrease the Errors in Ligament Tensions Computed Using the Superposition Method
,” engrxiv (Preprint).10.31224/4442
14.
Gillespie
,
C. M.
,
Arant
,
L. R.
,
Roth
,
J. D.
, and
Colbrunn
,
R. W.
,
2024
, “
Sensor Fusion Algorithm to Improve Accuracy of Robotic Superposition Testing Using 6-DOF Position Sensors
,” bioRxiv (Preprint).10.1101/2024.12.16.627751
15.
Gillespie
,
C. M.
,
Haas
,
N. J.
,
Nagle
,
T. F.
, and
Colbrunn
,
R. W.
,
2024
, “
Analysis and Implications of Compliance in Joint Biomechanics Superposition Testing
,” bioRxiv (Preprint).10.1101/2024.12.10.627572
16.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
,
1993
, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
,
290
, pp.
259
268
.10.1097/00003086-199305000-00033
17.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
,
2005
, “
The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
,
20
(
8
), pp.
1060
1067
.10.1016/j.arth.2004.08.005
18.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
356
, pp.
111
118
.10.1097/00003086-199811000-00016
19.
Blaha
,
J. D.
,
Mancinelli
,
C. A.
,
Simons
,
W. H.
,
Kish
,
V. L.
, and
Thyagarajan
,
G.
,
2003
, “
Kinematics of the Human Knee Using an Open Chain Cadaver Model
,”
Clin. Orthop. Relat. Res.
,
410
, pp.
25
34
.10.1097/01.blo.0000063564.90853.ed
20.
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A. R.
,
2000
, “
Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee
,”
J. Bone Jt. Surg., Br. Vol.
,
82-B
(
8
), pp.
1189
1195
.10.1302/0301-620X.82B8.0821189
21.
Arant
,
L. R.
, and
Roth
,
J. D.
,
2022
, “
Development and Evaluation of Ligament Phantoms Targeted for Shear Wave Tensiometry
,”
J. Mech. Behav. Biomed. Mater.
,
126
, p.
104984
.10.1016/j.jmbbm.2021.104984
22.
Pineda Guzman
,
R. A.
, and
Kersh
,
M. E.
,
2021
, “
Replication of the Tensile Behavior of Knee Ligaments Using Architected Acrylic Yarn
,”
J. Mech. Behav. Biomed. Mater.
,
118
, p.
104339
.10.1016/j.jmbbm.2021.104339
23.
Gali
,
J. C.
,
Almeida
,
T. A.
,
de Moraes Miguel
,
D. C.
,
Nassar
,
S. A.
,
Filho
,
J. C. G.
,
Drain
,
N. P.
, and
Fu
,
F. F.
,
2022
, “
The Posterior Cruciate Ligament Inclination Angle Is Higher in Anterior Cruciate Ligament Insufficiency
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
30
(
1
), pp.
124
130
.10.1007/s00167-021-06789-0
24.
Konarski
,
A.
,
Strang
,
M.
, and
Jain
,
N.
,
2020
, “
The Natural Orientation of the Anterior Cruciate Ligament Compared to the Tibial Plateau on Magnetic Resonance Imaging Scans
,”
J. Orthop.
,
22
, pp.
422
426
.10.1016/j.jor.2020.09.010
25.
Jiang
,
M.
,
Lawson
,
Z. T.
,
Erel
,
V.
,
Pervere
,
S.
,
Nan
,
T.
,
Robbins
,
A. B.
,
Feed
,
A. D.
, and
Moreno
,
M. R.
,
2020
, “
Clamping Soft Biologic Tissues for Uniaxial Tensile Testing: A Brief Survey of Current Methods and Development of a Novel Clamping Mechanism
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103503
.10.1016/j.jmbbm.2019.103503
26.
Markolf
,
K. L.
,
Mensch
,
J. S.
, and
Amstutz
,
H. C.
,
1976
, “
Stiffness and Laxity of the Knee—The Contributions of the Supporting Structures. A Quantitative In Vitro Study
,”
J. Bone Jt. Surg., Am. Vol.
,
58
(
5
), pp.
583
594
.10.2106/00004623-197658050-00001
27.
Noyes
,
F. R.
,
Clark
,
O.
,
Nolan
,
J.
, and
Johnson
,
D. J.
,
2023
, “
Functional Interaction of the Cruciate Ligaments, Posteromedial and Posterolateral Capsule, Oblique Popliteal Ligament, and Other Structures in Preventing Abnormal Knee Hyperextension
,”
Am. J. Sports Med.
,
51
(
5
), pp.
1146
1154
.10.1177/03635465231155203
28.
Noble
,
L. D.
, Jr.
,
Colbrunn
,
R. W.
,
Lee
,
D. G.
,
van den Bogert
,
A. J.
, and
Davis
,
B. L.
,
2010
, “
Design and Validation of a General Purpose Robotic Testing System for Musculoskeletal Applications
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
025001
.10.1115/1.4000851
29.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
30.
Hull
,
M. L.
,
2020
, “
Coordinate System Requirements to Determine Motions of the Tibiofemoral Joint Free From Kinematic Crosstalk Errors
,”
J. Biomech.
,
109
, p.
109928
.10.1016/j.jbiomech.2020.109928
31.
Nagle
,
T. F.
,
Erdemir
,
A.
, and
Colbrunn
,
R. W.
,
2021
, “
A Generalized Framework for Determination of Functional Musculoskeletal Joint Coordinate Systems
,”
J. Biomech.
,
127
, p.
110664
.10.1016/j.jbiomech.2021.110664
32.
Rosvold
,
J. M.
,
Darcy
,
S. P.
,
Peterson
,
R. C.
,
Achari
,
Y.
,
Corr
,
D. T.
,
Marchuk
,
L. L.
,
Frank
,
C. B.
, et al.,
2011
, “
Technical Issues in Using Robots to Reproduce Joint Specific Gait
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
054501
.10.1115/1.4003665
33.
Darcy
,
S. P.
,
Gil
,
J. E.
,
Woo
,
S. L.
, and
Debski
,
R. E.
,
2009
, “
The Importance of Position and Path Repeatability on Force at the Knee During Six-DOF Joint Motion
,”
Med. Eng. Phys.
,
31
(
5
), pp.
553
557
.10.1016/j.medengphy.2008.11.001
34.
Goldsmith
,
M. T.
,
Smith
,
S. D.
,
Jansson
,
K. S.
,
LaPrade
,
R. F.
, and
Wijdicks
,
C. A.
,
2014
, “
Characterization of Robotic System Passive Path Repeatability During Specimen Removal and Reinstallation for In Vitro Knee Joint Testing
,”
Med. Eng. Phys.
,
36
(
10
), pp.
1331
1337
.10.1016/j.medengphy.2014.06.022
35.
Levy
,
I. M.
,
Torzilli
,
P. A.
, and
Warren
,
R. F.
,
1982
, “
The Effect of Medial Meniscectomy on Anterior-Posterior Motion of the Knee
,”
JBJS
,
64
(
6
), pp.
883
888
.10.2106/00004623-198264060-00011
36.
Grood
,
E. S.
,
Stowers
,
S. F.
, and
Noyes
,
F. R.
,
1988
, “
Limits of Movement in the Human Knee. Effect of Sectioning the Posterior Cruciate Ligament and Posterolateral Structures
,”
JBJS
,
70
(
1
), pp.
88
97
.10.2106/00004623-198870010-00014
37.
Veltri
,
D. M.
,
Deng
,
X.-H.
,
Torzilli
,
P. A.
,
Warren
,
R. F.
, and
Maynard
,
M. J.
,
1995
, “
The Role of the Cruciate and Posterolateral Ligaments in Stability of the Knee—A Biomechanical Study
,”
Am. J. Sports Med.
,
23
(
4
), pp.
436
443
.10.1177/036354659502300411
38.
Gollehon
,
D. L.
,
Torzilli
,
P. A.
, and
Warren
,
R. F.
,
1987
, “
The Role of the Posterolateral and Cruciate Ligaments in the Stability of the Human Knee. A Biomechanical Study
,”
JBJS
,
69
(
2
), pp.
233
242
.10.2106/00004623-198769020-00010
39.
ASTM
,
2020
, “
Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
,”
ASTM
,
West Conshohocken, PA
.
40.
Smith
,
C. R.
,
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Vignos
,
M. F.
, and
Thelen
,
D. G.
,
2015
, “
Influence of Ligament Properties on Tibiofemoral Mechanics in Walking
,”
J. Knee Surg.
,
29
(
2
), pp.
99
106
.10.1055/s-0035-1558858
41.
Schmitz
,
A.
, and
Piovesan
,
D.
,
2016
, “
Development of an Open-Source, Discrete Element Knee Model
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2056
2067
.10.1109/TBME.2016.2585926
42.
Sharma
,
L.
,
Lou
,
C.
,
Felson
,
D. T.
,
Dunlop
,
D. D.
,
Kirwan-Mellis
,
G.
,
Hayes
,
K. W.
,
Weinrach
,
D.
, and
Buchanan
,
T. S.
,
1999
, “
Laxity in Healthy and Osteoarthritic Knees
,”
Arthritis Rheum.
,
42
(
5
), pp.
861
870
.10.1002/1529-0131(199905)42:5<861::AID-ANR4>3.0.CO;2-N
43.
Hosseini Nasab
,
S. H.
,
Smith
,
C. R.
,
Postolka
,
B.
,
Schütz
,
P.
,
List
,
R.
, and
Taylor
,
W. R.
,
2021
, “
In Vivo Elongation Patterns of the Collateral Ligaments in Healthy Knees During Functional Activities
,”
JBJS
,
103
(
17
), pp.
1620
1627
.10.2106/JBJS.20.01311
44.
Willinger
,
L.
,
Shinohara
,
S.
,
Athwal
,
K. K.
,
Ball
,
S.
,
Williams
,
A.
, and
Amis
,
A. A.
,
2020
, “
Length-Change Patterns of the Medial Collateral Ligament and Posterior Oblique Ligament in Relation to Their Function and Surgery
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
28
(
12
), pp.
3720
3732
.10.1007/s00167-020-06050-0
45.
Chaurasia
,
A.
,
Tyagi
,
A.
,
Santoshi
,
J. A.
,
Chaware
,
P.
, and
Rathinam
,
B. A.
,
2021
, “
Morphologic Features of the Distal Femur and Proximal Tibia: A Cross-Sectional Study
,”
Cureus
,
13
(
1
), p.
e12907
.10.7759/cureus.12907
46.
Voleti
,
P. B.
,
Stephenson
,
J. W.
,
Lotke
,
P. A.
, and
Lee
,
G.-C.
,
2014
, “
Plain Radiographs Underestimate the Asymmetry of the Posterior Condylar Offset of the Knee Compared With MRI
,”
Clin. Orthop. Relat. Res.
,
472
(
1
), pp.
155
161
.10.1007/s11999-013-2946-2
You do not currently have access to this content.