Abstract

Breast reconstruction using tissue expanders is the primary treatment option following mastectomy. Although skin growth in response to chronic supra-physiological stretch is well-established, individual patient factors such as breast shape, volume, skin prestrain, and mechanical properties, create unique deformation and growth patterns. The inability to predict skin growth and deformation prior to treatment often leads to complications and suboptimal esthetic outcomes. Personalized predictive simulations offer a promising solution to these challenges. We present a pipeline for predictive computational models of skin growth in tissue expansion. At the start of treatment, we collect three-dimensional (3D) photos and create an initial finite element model. Our framework accounts for uncertainties in treatment protocols, mechanical properties, and biological parameters. These uncertainties are informed by surgeon input, existing literature on mechanical properties, and prior research on porcine models for biological parameters. By collecting 3D photos longitudinally during treatment, and integrating the data through a Bayesian framework, we can systematically reduce uncertainty in the predictions. Calibrated personalized models are sampled using Monte Carlo methods, which require thousands of model evaluations. To overcome the computational limitations of directly evaluating the finite element model, we use Gaussian process surrogate models. We anticipate that this pipeline can be used to guide patient treatment in the near future.

References

1.
American Cancer Society
,
2024
, “
How Common Is Breast Cancer?
,”
American Cancer Society
,
Atlanta, GA
, accessed Apr. 16, 2025, https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html
2.
Kummerow
,
K. L.
,
Du
,
L.
,
Penson
,
D. F.
,
Shyr
,
Y.
, and
Hooks
,
M. A.
,
2015
, “
Nationwide Trends in Mastectomy for Early-Stage Breast Cancer
,”
JAMA Surg.
,
150
(
1
), pp.
9
16
.10.1001/jamasurg.2014.2895
3.
Miller
,
K. D.
,
Nogueira
,
L.
,
Mariotto
,
A. B.
,
Rowland
,
J. H.
,
Yabroff
,
K. R.
,
Alfano
,
C. M.
,
Jemal
,
A.
,
Kramer
,
J. L.
, and
Siegel
,
R. L.
,
2019
, “
Cancer Treatment and Survivorship Statistics, 2019
,”
CA: Cancer J. Clin.
,
69
(
5
), pp.
363
385
.10.3322/caac.21565
4.
Marcus
,
J.
,
Horan
,
D. B.
, and
Robinson
,
J. K.
,
1990
, “
Tissue Expansion: Past, Present, and Future
,”
J. Am. Acad. Dermatol.
,
23
(
5
), pp.
813
825
.10.1016/0190-9622(90)70296-T
5.
Bertozzi
,
N.
,
Pesce
,
M.
,
Santi
,
P.
, and
Raposio
,
E.
,
2017
, “
Tissue Expansion for Breast Reconstruction: Methods and Techniques
,”
Ann. Med. Surg.
,
21
, pp.
34
44
.10.1016/j.amsu.2017.07.048
6.
Johnson
,
T. M.
,
Lowe
,
L.
,
Brown
,
M. D.
,
Sullivan
,
M. J.
, and
Nelson
,
B. R.
,
1993
, “
Histology and Physiology of Tissue Expansion
,”
J. Dermatol. Surg. Oncol.
,
19
(
12
), pp.
1074
1078
.10.1111/j.1524-4725.1993.tb01002.x
7.
Kidd
,
T.
,
Mccabe
,
G.
,
Tait
,
J.
, and
Kulkarni
,
D.
,
2024
, “
Implant Reconstruction After Mastectomy—A Review and Summary of Current Literature
,”
Cancer Treat. Res. Commun.
,
40
, p.
100821
.10.1016/j.ctarc.2024.100821
8.
Xie
,
Y.
,
Tang
,
Y.
, and
Wehby
,
G. L.
,
2015
, “
Federal Health Coverage Mandates and Health Care Utilization: The Case of the Women's Health and Cancer Rights Act and Use of Breast Reconstruction Surgery
,”
J. Women's Health
,
24
(
8
), pp.
655
662
.10.1089/jwh.2014.5057
9.
Elder
,
E. E.
,
Brandberg
,
Y.
,
Björklund
,
T.
,
Rylander
,
R.
,
Lagergren
,
J.
,
Jurell
,
G.
,
Wickman
,
M.
, and
Sandelin
,
K.
,
2005
, “
Quality of Life and Patient Satisfaction in Breast Cancer Patients After Immediate Breast Reconstruction: A Prospective Study
,”
Breast
,
14
(
3
), pp.
201
208
.10.1016/j.breast.2004.10.008
10.
Jonczyk
,
M. M.
,
Jean
,
J.
,
Graham
,
R.
, and
Chatterjee
,
A.
,
2019
, “
Surgical Trends in Breast Cancer: A Rise in Novel Operative Treatment Options Over a 12 Year Analysis
,”
Breast Cancer Res. Treat.
,
173
(
2
), pp.
267
274
.10.1007/s10549-018-5018-1
11.
Browne
,
J. P.
,
Jeevan
,
R.
,
Gulliver-Clarke
,
C.
,
Pereira
,
J.
,
Caddy
,
C. M.
, and
van der Meulen
,
J. H. P.
,
2017
, “
The Association Between Complications and Quality of Life After Mastectomy and Breast Reconstruction for Breast Cancer
,”
Cancer
,
123
(
18
), pp.
3460
3467
.10.1002/cncr.30788
12.
Kraenzlin
,
F.
,
Habibi
,
M.
,
Aliu
,
O.
,
Cooney
,
D.
,
Rosson
,
G.
,
Manahan
,
M.
,
Sacks
,
J.
, and
Broderick
,
K.
,
2022
, “
Infections After Mastectomy and Tissue Expander Placement: A Multivariate Regression Analysis
,”
J. Plast., Reconstr. Aesthetic Surg.
,
75
(
7
), pp.
2190
2196
.10.1016/j.bjps.2022.01.050
13.
Nelson
,
J. A.
,
Rubenstein
,
R. N.
,
Vorstenbosch
,
J.
,
Haglich
,
K.
,
Poulton
,
R. T.
,
McGriff
,
D.
,
Stern
,
C. S.
,
Coriddi
,
M.
,
Cordeiro
,
P. G.
,
McCarthy
,
C. M.
,
Disa
,
J. J.
,
Mehrara
,
B. J.
, and
Matros
,
E.
,
2024
, “
Textured Versus Smooth Tissue Expanders: A Comparison of Complications in 3526 Breast Reconstructions
,”
Plast. Reconstr. Surg.
,
153
(
2
), pp.
262e
272e
.10.1097/prs.0000000000010600
14.
Jagsi
,
R.
,
Jiang
,
J.
,
Momoh
,
A. O.
,
Alderman
,
A.
,
Giordano
,
S. H.
,
Buchholz
,
T. A.
,
Pierce
,
L. J.
,
Kronowitz
,
S. J.
, and
Smith
,
B. D.
,
2016
, “
Complications After Mastectomy and Immediate Breast Reconstruction for Breast Cancer: A Claims-Based Analysis
,”
Ann. Surg.
,
263
(
2
), pp.
219
227
.10.1097/SLA.0000000000001177
15.
Saldanha
,
I. J.
,
Broyles
,
J. M.
,
Adam
,
G. P.
,
Cao
,
W.
,
Bhuma
,
M. R.
,
Mehta
,
S.
,
Pusic
,
A. L.
,
Dominici
,
L. S.
, and
Balk
,
E. M.
,
2022
, “
Implant-Based Breast Reconstruction After Mastectomy for Breast Cancer: A Systematic Review and Meta-Analysis
,”
Plast. Reconstr. Surg.–Global Open
,
10
(
3
), p.
e4179
.10.1097/GOX.0000000000004179
16.
Duraes
,
E. F. R.
,
Schwarz
,
G. S.
,
De Sousa
,
J. B.
,
Duraes
,
L. C.
,
Morisada
,
M.
,
Baker
,
T.
,
Djohan
,
R. S.
,
Bernard
,
S. L.
, and
Moreira
,
A. A.
,
2020
, “
Factors Influencing the Aesthetic Outcome and Quality of Life After Breast Reconstruction: A Cross-Sectional Study
,”
Ann. Plast. Surg.
,
84
(
5
), pp.
494
506
.10.1097/SAP.0000000000002157
17.
Frey
,
J. D.
,
Salibian
,
A. A.
,
Choi
,
M.
, and
Karp
,
N. S.
,
2019
, “
Optimizing Outcomes in Nipple-Sparing Mastectomy: Mastectomy Flap Thickness Is Not One Size Fits All
,”
Plast. Reconstr. Surg.–Global Open
,
7
(
1
), p.
e2103
.10.1097/GOX.0000000000002103
18.
Kim
,
J. Y. S.
,
Khavanin
,
N.
,
Jordan
,
S. W.
,
Ver Halen
,
J. P.
,
Mlodinow
,
A. S.
,
Bethke
,
K. P.
,
Khan
,
S. A.
,
Hansen
,
N. M.
,
Losken
,
A.
, and
Fine
,
N. A.
,
2014
, “
Individualized Risk of Surgical-Site Infection: An Application of the Breast Reconstruction Risk Assessment Score
,”
Plast. Reconstr. Surg.
,
134
(
3
), pp.
351e
362e
.10.1097/PRS.0000000000000439
19.
Han
,
L.
,
Hipwell
,
J. H.
,
Tanner
,
C.
,
Taylor
,
Z.
,
Mertzanidou
,
T.
,
Cardoso
,
J.
,
Ourselin
,
S.
, and
Hawkes
,
D. J.
,
2012
, “
Development of Patient-Specific Biomechanical Models for Predicting Large Breast Deformation
,”
Phys. Med. Biol.
,
57
(
2
), pp.
455
472
.10.1088/0031-9155/57/2/455
20.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “
Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems
,”
Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches
,
Springer
,
Cham, Switzerland
, pp.
85
113
.10.1007/978-3-319-38756-7
21.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
.10.1109/TII.2018.2873186
22.
Corral-Acero
,
J.
,
Margara
,
F.
,
Marciniak
,
M.
,
Rodero
,
C.
,
Loncaric
,
F.
,
Feng
,
Y.
,
Gilbert
,
A.
,
et al.
,
2020
, “
The ‘Digital Twin’ to Enable the Vision of Precision Cardiology
,”
Eur. Heart J.
,
41
(
48
), pp.
4556
4564
.10.1093/eurheartj/ehaa159
23.
Björnsson
,
B.
,
Borrebaeck
,
C.
,
Elander
,
N.
,
Gasslander
,
T.
,
Gawel
,
D. R.
,
Gustafsson
,
M.
,
Jörnsten
,
R.
,
et al.
,
2020
, “
Digital Twins to Personalize Medicine
,”
Genome Med.
,
12
(
1
), p.
4
.10.1186/s13073-019-0701-3
24.
Roberts
,
A.
,
Baxter
,
N.
,
Camacho
,
X.
,
Lau
,
C.
, and
Zhong
,
T.
,
2015
, “
Once Is Rarely Enough: A Population-Based Study of Reoperations After Postmastectomy Breast Reconstruction
,”
Ann. Surg. Oncol.
,
22
(
10
), pp.
3302
3307
.10.1245/s10434-015-4716-8
25.
Socci
,
L.
,
Pennati
,
G.
,
Gervaso
,
F.
, and
Vena
,
P.
,
2007
, “
An Axisymmetric Computational Model of Skin Expansion and Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
3
), pp.
177
188
.10.1007/s10237-006-0047-9
26.
Tepole
,
A.
B.,
Ploch
,
C.
J.,
Wong
,
J.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2011
, “
Growing Skin: A Computational Model for Skin Expansion in Reconstructive Surgery
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2177
2190
.10.1016/j.jmps.2011.05.004
27.
Zöllner
,
A. M.
,
Tepole
,
A.
B., and
Kuhl
,
E.
,
2012
, “
On the Biomechanics and Mechanobiology of Growing Skin
,”
J. Theor. Biol.
,
297
, pp.
166
175
.10.1016/j.jtbi.2011.12.022
28.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
29.
Humphrey
,
J. D.
, and
Rajagopal
,
K.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.10.1142/S0218202502001714
30.
Ambrosi
,
D.
,
Ateshian
,
G. A.
,
Arruda
,
E. M.
,
Cowin
,
S. C.
,
Dumais
,
J.
,
Goriely
,
A.
,
Holzapfel
,
G. A.
,
Humphrey
,
J. D.
,
Kemkemer
,
R.
,
Kuhl
,
E.
,
Olberding
,
J. E.
,
Taber
,
L. A.
, and
Garikipati
,
K.
,
2011
, “
Perspectives on Biological Growth and Remodeling
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
863
883
.10.1016/j.jmps.2010.12.011
31.
Humphrey
,
J. D.
,
2021
, “
Constrained Mixture Models of Soft Tissue Growth and Remodeling–Twenty Years After
,”
J. Elasticity
,
145
(
1–2
), pp.
49
75
.10.1007/s10659-020-09809-1
32.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.10.1007/s10237-006-0070-x
33.
Himpel
,
G.
,
Kuhl
,
E.
,
Menzel
,
A.
, and
Steinmann
,
P.
,
2005
, “
Computational Modelling of Isotropic Multiplicative Growth
,”
Comput. Model. Eng. Sci.
,
8
, pp.
119
134
.10.3970/cmes.2005.008.119
34.
Menzel
,
A.
, and
Kuhl
,
E.
,
2012
, “
Frontiers in Growth and Remodeling
,”
Mech. Res. Commun.
,
42
, pp.
1
14
.10.1016/j.mechrescom.2012.02.007
35.
Eskandari
,
M.
, and
Kuhl
,
E.
,
2015
, “
Systems Biology and Mechanics of Growth
,”
Wiley Interdiscip. Rev.: Syst. Biol. Med.
,
7
(
6
), pp.
401
412
.10.1002/wsbm.1312
36.
Belkoff
,
S. M.
,
Naylor
,
E. C.
,
Walshaw
,
R.
,
Lanigan
,
E.
,
Colony
,
L.
, and
Haut
,
R. C.
,
1995
, “
Effects of Subcutaneous Expansion on the Mechanical Properties of Porcine Skin
,”
J. Surg. Res.
,
58
(
2
), pp.
117
123
.10.1006/jsre.1995.1019
37.
Silver
,
F. H.
,
Siperko
,
L. M.
, and
Seehra
,
G. P.
,
2003
, “
Mechanobiology of Force Transduction in Dermal Tissue
,”
Skin Res. Technol.
,
9
(
1
), pp.
3
23
.10.1034/j.1600-0846.2003.00358.x
38.
Chin
,
M. S.
,
Ogawa
,
R.
,
Lancerotto
,
L.
,
Pietramaggiori
,
G.
,
Schomacker
,
K. T.
,
Mathews
,
J. C.
,
Scherer
,
S. S.
,
Van Duyn
,
P.
,
Prsa
,
M. J.
,
Ottensmeyer
,
M. P.
,
Veves
,
A.
, and
Orgill
,
D. P.
,
2010
, “
in vivo Acceleration of Skin Growth Using a Servo-Controlled Stretching Device
,”
Tissue Eng., Part C
,
16
(
3
), pp.
397
405
.10.1089/ten.tec.2009.0185
39.
Zöllner
,
A. M.
,
Tepole
,
A. B.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2012
, “
Growing Skin: Tissue Expansion in Pediatric Forehead Reconstruction
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
855
867
.10.1007/s10237-011-0357-4
40.
Tepole
,
A. B.
,
Gart
,
M.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2014
, “
Characterization of Living Skin Using Multi-View Stereo and Isogeometric Analysis
,”
Acta Biomater.
,
10
(
11
), pp.
4822
4831
.10.1016/j.actbio.2014.06.037
41.
Lee
,
T.
,
Vaca
,
E. E.
,
Ledwon
,
J. K.
,
Bae
,
H.
,
Topczewska
,
J. M.
,
Turin
,
S. Y.
,
Kuhl
,
E.
,
Gosain
,
A. K.
, and
Tepole
,
A. B.
,
2018
, “
Improving Tissue Expansion Protocols Through Computational Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
82
, pp.
224
234
.10.1016/j.jmbbm.2018.03.034
42.
Tepole
,
A.
B.,
Gart
,
M.
,
Purnell
,
C. A.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2016
, “
The Incompatibility of Living Systems: Characterizing Growth-Induced Incompatibilities in Expanded Skin
,”
Ann. Biomed. Eng.
,
44
(
5
), pp.
1734
1752
.10.1007/s10439-015-1467-4
43.
Han
,
T.
,
Lee
,
T.
,
Ledwon
,
J.
,
Vaca
,
E.
,
Turin
,
S.
,
Kearney
,
A.
,
Gosain
,
A. K.
, and
Tepole
,
A. B.
,
2022
, “
Bayesian Calibration of a Computational Model of Tissue Expansion Based on a Porcine Animal Model
,”
Acta Biomater.
,
137
, pp.
136
146
.10.1016/j.actbio.2021.10.007
44.
Aragona
,
M.
,
Sifrim
,
A.
,
Malfait
,
M.
,
Song
,
Y.
,
Van Herck
,
J.
,
Dekoninck
,
S.
,
Gargouri
,
S.
,
Lapouge
,
G.
,
Swedlund
,
B.
,
Dubois
,
C.
,
Baatsen
,
P.
,
Vints
,
K.
,
Han
,
S.
,
Tissir
,
F.
,
Voet
,
T.
,
Simons
,
B. D.
, and
Blanpain
,
C.
,
2020
, “
Mechanisms of Stretch-Mediated Skin Expansion at Single-Cell Resolution
,”
Nature
,
584
(
7820
), pp.
268
273
.10.1038/s41586-020-2555-7
45.
Topczewska
,
J. M.
,
Ledwon
,
J. K.
,
Vaca
,
E. E.
, and
Gosain
,
A. K.
,
2019
, “
Mechanical Stretching Stimulates Growth of the Basal Layer and Rete Ridges in the Epidermis
,”
J. Tissue Eng. Regener. Med.
,
13
(
11
), pp.
2121
2125
.10.1002/term.2952
46.
Lee
,
T.
,
Turin
,
S. Y.
,
Gosain
,
A. K.
,
Bilionis
,
I.
, and
Tepole
,
A.
B.,
2018
, “
Propagation of Material Behavior Uncertainty in a Nonlinear Finite Element Model of Reconstructive Surgery
,”
Biomech. Model. Mechanobiol.
,
17
(
6
), pp.
1857
1873
.10.1007/s10237-018-1061-4
47.
Lee
,
T.
,
Bilionis
,
I.
, and
Tepole
,
A.
B.,
2020
, “
Propagation of Uncertainty in the Mechanical and Biological Response of Growing Tissues Using Multi-Fidelity Gaussian Process Regression
,”
Comput. Methods Appl. Mech. Eng.
,
359
, p.
112724
.10.1016/j.cma.2019.112724
48.
Han
,
T.
,
Ahmed
,
K. S.
,
Gosain
,
A. K.
,
Tepole
,
A. B.
, and
Lee
,
T.
,
2022
, “
Multi-Fidelity Gaussian Process Surrogate Modeling of Pediatric Tissue Expansion
,”
ASME J. Biomech. Eng.
,
144
(
12
), p.
121005
.10.1115/1.4055276
49.
Limbert
,
G.
,
2017
, “
Mathematical and Computational Modelling of Skin Biophysics: A Review
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2203
), p.
20170257
.10.1098/rspa.2017.0257
50.
Luebberding
,
S.
,
Krueger
,
N.
, and
Kerscher
,
M.
,
2014
, “
Mechanical Properties of Human Skin in vivo: A Comparative Evaluation in 300 Men and Women
,”
Skin Res. Technol.
,
20
(
2
), pp.
127
135
.10.1111/srt.12094
51.
Kumaraswamy
,
N.
,
Khatam
,
H.
,
Reece
,
G. P.
,
Fingeret
,
M. C.
,
Markey
,
M. K.
, and
Ravi-Chandar
,
K.
,
2017
, “
Mechanical Response of Human Female Breast Skin Under Uniaxial Stretching
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
164
175
.10.1016/j.jmbbm.2017.05.027
52.
Bilionis
,
I.
, and
Zabaras
,
N.
,
2014
, “
Solution of Inverse Problems With Limited Forward Solver Evaluations: A Bayesian Perspective
,”
Inverse Probl.
,
30
(
1
), p.
015004
.10.1088/0266-5611/30/1/015004
53.
Lund
,
A.
,
Bilionis
,
I.
, and
Dyke
,
S. J.
,
2021
, “
Variational Inference for Nonlinear Structural Identification
,”
J. Appl. Comput. Mech.
,
7
(
Special Issue
), pp.
1218
1231
.10.22055/jacm.2020.32626.2049
54.
Karumuri
,
S.
, and
Bilionis
,
I.
,
2024
, “
Learning to Solve Bayesian Inverse Problems: An Amortized Variational Inference Approach Using Gaussian and Flow Guides
,”
J. Comput. Phys.
,
511
, p.
113117
.10.1016/j.jcp.2024.113117
55.
Hsieh
,
F.
,
Shah
,
A.
, and
Malata
,
C. M.
,
2010
, “
Experience With the Mentor Contour Profile Becker-35 Expandable Implants in Reconstructive Breast Surgery
,”
J. Plast., Reconstr. Aesthetic Surg.
,
63
(
7
), pp.
1124
1130
.10.1016/j.bjps.2009.05.043
56.
Baeke
,
J. L.
,
2002
, “
Breast Deformity Caused by Anatomical or Teardrop Implant Rotation
,”
Plast. Reconstr. Surg.
,
109
(
7
), pp.
2555
2567
.10.1097/00006534-200206000-00060
57.
Sutradhar
,
A.
, and
Miller
,
M. J.
,
2013
, “
in vivo Measurement of Breast Skin Elasticity and Breast Skin Thickness
,”
Skin Res. Technol.
,
19
(
1
), pp.
e191
e199
.10.1111/j.1600-0846.2012.00627.x
58.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
Berlin, Germany
.
59.
Tripathy
,
R. K.
, and
Bilionis
,
I.
,
2018
, “
Deep UQ: Learning Deep Neural Network Surrogate Models for High Dimensional Uncertainty Quantification
,”
J. Comput. Phys.
,
375
, pp.
565
588
.10.1016/j.jcp.2018.08.036
60.
Foreman-Mackey
,
D.
,
Hogg
,
D. W.
,
Lang
,
D.
, and
Goodman
,
J.
,
2013
, “
emcee: The MCMC Hammer
,”
Publ. Astron. Soc. Pac.
,
125
(
925
), pp.
306
312
.10.1086/670067
61.
Sacks
,
M. S.
,
2024
, “
A Mathematical Model for Postimplant Collagen Remodeling in an Autologous Engineered Pulmonary Arterial Conduit
,”
ASME J. Biomech. Eng.
,
146
(
11
), p.
111006
.10.1115/1.4065903
62.
Gustafson
,
P.
,
2009
, “
What Are the Limits of Posterior Distributions Arising From Nonidentified Models, and Why Should We Care?
,”
J. Am. Stat. Assoc.
,
104
(
488
), pp.
1682
1695
.10.1198/jasa.2009.tm08603
63.
Ní Annaidh
,
A.
,
Bruyère
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Otténio
,
M.
,
2012
, “
Characterization of the Anisotropic Mechanical Properties of Excised Human Skin
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
139
148
.10.1016/j.jmbbm.2011.08.016
64.
Tonge
,
T. K.
,
Voo
,
L. M.
, and
Nguyen
,
T. D.
,
2013
, “
Full-Field Bulge Test for Planar Anisotropic Tissues: Part ii—A Thin Shell Method for Determining Material Parameters and Comparison of Two Distributed Fiber Modeling Approaches
,”
Acta Biomater.
,
9
(
4
), pp.
5926
5942
.10.1016/j.actbio.2012.11.034
65.
Chen
,
S.
,
Ní Annaidh
,
A.
, and
Roccabianca
,
S.
,
2020
, “
A Microstructurally Inspired Constitutive Model for Skin Mechanics
,”
Biomech. Model. Mechanobiol.
,
19
(
1
), pp.
275
289
.10.1007/s10237-019-01210-9
66.
Müller
,
B.
,
Elrod
,
J.
,
Pensalfini
,
M.
,
Hopf
,
R.
,
Distler
,
O.
,
Schiestl
,
C.
, and
Mazza
,
E.
,
2018
, “
A Novel Ultra-Light Suction Device for Mechanical Characterization of Skin
,”
PLoS One
,
13
(
8
), p.
e0201440
.10.1371/journal.pone.0201440
67.
Song
,
G.
,
An
,
J.
,
Tepole
,
A.
B., and
Lee
,
T.
,
2022
, “
Bayesian Inference With Gaussian Process Surrogates to Characterize Anisotropic Mechanical Properties of Skin From Suction Tests
,”
ASME J. Biomech. Eng.
,
144
(
12
), p.
121003
.10.1115/1.4054929
68.
Irons
,
L.
,
Latorre
,
M.
, and
Humphrey
,
J. D.
,
2021
, “
From Transcript to Tissue: Multiscale Modeling From Cell Signaling to Matrix Remodeling
,”
Ann. Biomed. Eng.
,
49
(
7
), pp.
1701
1715
.10.1007/s10439-020-02713-8
69.
Yoshida
,
K.
,
Saucerman
,
J. J.
, and
Holmes
,
J. W.
,
2022
, “
Multiscale Model of Heart Growth During Pregnancy: Integrating Mechanical and Hormonal Signaling
,”
Biomech. Model. Mechanobiol.
,
21
(
4
), pp.
1267
1283
.10.1007/s10237-022-01589-y
70.
Ledwon
,
J. K.
,
Kelsey
,
L. J.
,
Vaca
,
E. E.
, and
Gosain
,
A. K.
,
2020
, “
Transcriptomic Analysis Reveals Dynamic Molecular Changes in Skin Induced by Mechanical Forces Secondary to Tissue Expansion
,”
Sci. Rep.
,
10
(
1
), p.
15991
.10.1038/s41598-020-71823-z
71.
Yang
,
J. H.
, and
Saucerman
,
J. J.
,
2011
, “
Computational Models Reduce Complexity and Accelerate Insight Into Cardiac Signaling Networks
,”
Circ. Res.
,
108
(
1
), pp.
85
97
.10.1161/CIRCRESAHA.110.223602
72.
Saucerman
,
J. J.
, and
McCulloch
,
A. D.
,
2004
, “
Mechanistic Systems Models of Cell Signaling Networks: A Case Study of Myocyte Adrenergic Regulation
,”
Prog. Biophys. Mol. Biol.
,
85
(
2–3
), pp.
261
278
.10.1016/j.pbiomolbio.2004.01.005
73.
Xiang
,
X. I.
,
Yan
,
F.
,
Yang
,
Y.
,
Tang
,
Y.
,
Wang
,
L.
,
Zeng
,
J.
, and
Qiu
,
L.
,
2017
, “
Quantitative Assessment of Healthy Skin Elasticity: Reliability and Feasibility of Shear Wave Elastography
,”
Ultrasound Med. Biol.
,
43
(
2
), pp.
445
452
.10.1016/j.ultrasmedbio.2016.10.002
74.
Nagle
,
M.
,
Broderick
,
H.
C.,
Tepole
,
A.
B.,
Fop
,
M.
, and
Ní Annaidh
,
A.
,
2024
, “
A Machine Learning Approach to Predict in vivo Skin Growth
,”
Sci. Rep.
,
14
(
1
), p.
17456
.10.1038/s41598-024-67056-z
75.
Pawar
,
A.
,
Li
,
L.
,
Gosain
,
A. K.
,
Umulis
,
D. M.
, and
Tepole
,
A. B.
,
2022
, “
PDE-Constrained Shape Registration to Characterize Biological Growth and Morphogenesis From Imaging Data
,”
Eng. Comput.
,
38
(
5
), pp.
3909
3924
.10.1007/s00366-022-01682-x
76.
Lin
,
A. M.
,
Christensen
,
J. M.
,
Liao
,
E. C.
,
Cetrulo
,
C. L.
, Jr.
,
Smith
,
B. L.
,
Austen
,
W. G.
, Jr.
,
Winograd
,
J.
, and
Colwell
,
A. S.
,
2021
, “
Postmastectomy Radiation Therapy on Permanent Implants or Tissue Expanders: Which Is Better?
,”
Ann. Surg.
,
274
(
6
), pp.
e974
e979
.10.1097/SLA.0000000000003670
77.
Nunez-Alvarez
,
L.
,
Ledwon
,
J. K.
,
Applebaum
,
S.
,
Progri
,
B.
,
Han
,
T.
,
Laudo
,
J.
,
Tac
,
V.
,
Gosain
,
A. K.
, and
Tepole
,
A. B.
,
2024
, “
Tissue Expansion Mitigates Radiation-Induced Skin Fibrosis in a Porcine Model
,”
Acta Biomater.
,
189
, pp.
427
438
.10.1016/j.actbio.2024.09.035
You do not currently have access to this content.