Graphical Abstract Figure

Compartment size profiles of the physical joints of interest for the 4CCr fatigue model through 13 lifting cycles

Graphical Abstract Figure

Compartment size profiles of the physical joints of interest for the 4CCr fatigue model through 13 lifting cycles

Close modal

Abstract

This paper predicts the optimal motion for a repetitive lifting task considering muscle fatigue. The Denavit–Hartenberg (DH) representation is employed to characterize the two-dimensional (2D) digital human model with 10 degrees-of-freedom (DOFs). Two joint-based muscle fatigue models, i.e., a three-compartment controller (3CC) muscle fatigue model (validated for isometric tasks) and a four-compartment controller with augmented recovery (4CCr) muscle fatigue model (validated for dynamic tasks), are utilized to account for the fatigue effect due to the repetitive motion. The lifting problem is formulated mathematically as an optimization problem, with the objective of minimizing dynamic effort and joint acceleration subjected to both physical and task-specific constraints. The design variables include joint angle profiles, discretized by quartic B-splines, and the control points of the profiles of the fatigue compartments associated with major body joints (spinal, shoulder, elbow, hip, and knee joints). The outcomes of the simulation encompass profiles of joint angles, joint torques, and the advancement of joint fatigue. It is notable that the profiles of joint angles and torques exhibit distinct periodic patterns. Numerical simulations and experiments with a 20 kg box reveal that the maximum predicted lifting cycles are 11 for the 3CC fatigue model and 13 for the 4CCr fatigue model while the experimental result is 13 cycles. The results indicate that the 4CCr muscle fatigue model provides enhanced accuracy over the 3CC model for predicting task duration (number of cycles) of repetitive lifting.

References

1.
Barry
,
B. K.
, and
Enoka
,
R. M.
,
2007
, “
The Neurobiology of Muscle Fatigue: 15 Years Later
,”
Integr. Comp. Biol.
,
47
(
4
), pp.
465
473
.10.1093/icb/icm047
2.
Fitts
,
R. H.
,
1994
, “
Cellular Mechanisms of Muscle Fatigue
,”
Physiol. Rev.
,
74
(
1
), pp.
49
94
.10.1152/physrev.1994.74.1.49
3.
Daynard
,
D.
,
Yassi
,
A.
,
Cooper
,
J.
,
Tate
,
R.
,
Norman
,
R.
, and
Wells
,
R.
,
2001
, “
Biomechanical Analysis of Peak and Cumulative Spinal Loads During Simulated Patient-Handling Activities: A Substudy of a Randomized Controlled Trial to Prevent Lift and Transfer Injury of Health Care Workers
,”
Appl. Ergonom.
,
32
(
3
), pp.
199
214
.10.1016/S0003-6870(00)00070-3
4.
Song
,
J.
,
Qu
,
X.
, and
Chen
,
C.-H.
,
2016
, “
Simulation of Lifting Motions Using a Novel Multi-Objective Optimization Approach
,”
Int. J. Ind. Ergonom.
,
53
(
100
), pp.
37
47
.10.1016/j.ergon.2015.10.002
5.
Xiang
,
Y.
,
Arora
,
J.
,
Rahmatalla
,
S.
,
Marler
,
R.
,
Bhatt
,
R.
, and
Abdel-Malek
,
K.
,
2010
, “
Human Lifting Simulation Using a Multi-Objective Optimization Approach
,”
Multibody Syst. Dyn.
,
23
(
4
), pp.
431
451
.10.1007/s11044-009-9186-y
6.
Xiang
,
Y.
, and
Arefeen
,
A.
,
2020
, “
Two-Dimensional Team Lifting Prediction With Floating-Base Box Dynamics and Grasping Force Coupling
,”
Multibody Syst. Dyn.
,
50
(
2
), pp.
211
231
.10.1007/s11044-020-09742-0
7.
Zaman
,
R.
,
Xiang
,
Y.
,
Cruz
,
J.
, and
Yang
,
J.
,
2021
, “
Two-Dimensional Versus Three-Dimensional Symmetric Lifting Motion Prediction Models: A Case Study
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
044501
.10.1115/1.4049217
8.
Zaman
,
R.
,
Arefeen
,
A.
,
Quarnstrom
,
J.
,
Barman
,
S.
,
Yang
,
J.
, and
Xiang
,
Y.
,
2022
, “
Optimization-Based Biomechanical Lifting Models for Manual Material Handling: A Comprehensive Review
,”
Proc. Inst. Mech. Eng., Part H J. Eng. Med.
,
236
(
9
), pp.
1273
1287
.10.1177/09544119221114208
9.
Zaman
,
R.
,
Xiang
,
Y.
,
Cruz
,
J.
, and
Yang
,
J.
,
2021
, “
Three-Dimensional Asymmetric Maximum Weight Lifting Prediction Considering Dynamic Joint Strength
,”
J. Eng. Med.
,
235
(
4
), pp.
437
446
.10.1177/0954411920987035
10.
Zaman
,
R.
,
Xiang
,
Y.
,
Rakshit
,
R.
, and
Yang
,
J.
,
2022
, “
Hybrid Predictive Model for Lifting by Integrating Skeletal Motion Prediction With an OpenSim Musculoskeletal Model
,”
IEEE Trans. Biomed. Eng.
,
69
(
3
), pp.
1111
1122
.10.1109/TBME.2021.3114374
11.
Xia
,
T.
, and
Frey Law
,
L. A.
,
2008
, “
A Theoretical Approach for Modeling Peripheral Muscle Fatigue and Recovery
,”
J. Biomech.
,
41
(
14
), pp.
3046
3052
.10.1016/j.jbiomech.2008.07.013
12.
Rakshit
,
R.
,
Xiang
,
Y.
, and
Yang
,
J.
,
2021
, “
Functional Muscle Group-and Sex-Specific Parameters for a Three-Compartment Controller Muscle Fatigue Model Applied to Isometric Contractions
,”
J. Biomech.
,
127
, p.
110695
.10.1016/j.jbiomech.2021.110695
13.
Ma
,
L.
,
Chablat
,
D.
,
Bennis
,
F.
, and
Zhang
,
W.
,
2009
, “
A New Simple Dynamic Muscle Fatigue Model and Its Validation
,”
Int. J. Ind. Ergonom.
,
39
(
1
), pp.
211
220
.10.1016/j.ergon.2008.04.004
14.
Giat
,
Y.
,
Mizrahi
,
J.
, and
Levy
,
M.
,
1993
, “
A Musculotendon Model of the Fatigue Profiles of Paralyzed Quadriceps Muscle Under FES
,”
IEEE Trans. Biomed. Eng.
,
40
(
7
), pp.
664
674
.10.1109/10.237696
15.
Barman
,
S.
,
Xiang
,
Y.
,
Rakshit
,
R.
, and
Yang
,
J.
,
2022
, “
Joint Fatigue-Based Optimal Posture Prediction for Maximizing Endurance Time in Box Carrying Task
,”
Multibody Syst. Dyn.
,
55
(
3
), pp.
323
339
.10.1007/s11044-022-09832-1
16.
Michaud
,
F.
,
Frey-Law
,
L. A.
,
Lugrís
,
U.
,
Cuadrado
,
L.
,
Figueroa-Rodríguez
,
J.
, and
Cuadrado
,
J.
,
2023
, “
Applying a Muscle Fatigue Model When Optimizing Load-Sharing Between Muscles for Short-Duration High-Intensity Exercise: A Preliminary Study
,”
Front. Physiol.
,
14
, p.
604
.10.3389/fphys.2023.1167748
17.
Rakshit
,
R.
,
2023
, “
A Velocity-Dependent Model of Localized Muscle Fatigue for Dynamic Activity
,”
Ph.D. dissertation
,
Texas Tech University
,
Lubbock, TX
.https://hdl.handle.net/2346/96764
18.
Yang
,
J.
,
Rakshit
,
R.
,
Barman
,
S.
, and
Xiang
,
Y.
,
2025
, “
A Four-Compartment Controller Model of Muscle Fatigue for Static and Dynamic Tasks
,”
Front. Physiol.
,
16
, p.
1518847
.10.3389/fphys.2025.1518847
19.
Pereira
,
A. F.
,
Silva
,
M. T.
,
Martins
,
J. M.
, and
de Carvalho
,
M.
,
2011
, “
Implementation of an Efficient Muscle Fatigue Model in the Framework of Multibody Systems Dynamics for Analysis of Human Movements
,”
Proc. Inst. Mech. Eng. J. Multi-Body Dyn. Part K
,
225
(
4
), pp.
359
370
.10.1177/1464419311415954
20.
Song
,
H.
,
Peng
,
W. Z.
, and
Kim
,
J. H.
,
2023
, “
Effects of Object Mass on Balancing for Whole-Body Lifting Tasks
,”
IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids)
, Austin, TX, Dec. 12–14.10.1109/Humanoids57100.2023.10375174
21.
Arisumi
,
H.
,
Miossec
,
S.
,
Chardonnet
,
J. R.
, and
Yokoi
,
K.
,
2008
, “
Dynamic Lifting by Whole Body Motion of Humanoid Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
, Nice, France, Sept. 22–26, pp.
668
675
.10.1109/IROS.2008.4651195
22.
Mummolo
,
C.
,
Park
,
S.
,
Mangialardi
,
L.
, and
Kim
,
J. H.
,
2016
, “
Computational Evaluation of Load Carriage Effects on Gait Balance Stability
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
11
), pp.
1127
1136
.10.1080/10255842.2015.1110146
23.
Cheng
,
H.
,
Obergefell
,
L.
, and
Rizer
,
A.
,
1994
, “
Generator of Body (GEBOD) Manual
,”
AL/CF-TR-1994-0051, Armstrong Laboratory, Air Force Materiel Command
,
Wright-Patterson Air Force Base
,
OH
.
24.
Fu
,
K. S.
,
Gonzalez
,
R.
, and
Lee
,
C.
,
1987
,
Robotics: Control, Sensing, Vision, and Intelligence
,
McGraw-Hill
,
New York
.
25.
Xiang
,
Y.
,
Arora
,
J.
, and
Abdel-Malek
,
K.
,
2009
, “
Optimization-Based Motion Prediction of Mechanical Systems: Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
595
608
.10.1007/s00158-008-0247-2
26.
Barman
,
S.
, and
Xiang
,
Y.
,
2020
, “
Recursive Newton-Euler Dynamics and Sensitivity Analysis for Robot Manipulator With Revolute Joints
,”
ASME
Paper No. DETC2020-22646.10.1115/DETC2020-22646
27.
Xiang
,
Y.
,
Arora
,
J.
,
Rahmatalla
,
S.
, and
Abdel-Malek
,
K.
,
2009b
, “
Optimization-Based Dynamic Human Walking Prediction: One Step Formulation
,”
Int. J. Numer. Methods Eng.
,
79
(
6
), pp.
667
695
.10.1002/nme.2575
28.
Frey-Law
,
L. A.
,
Looft
,
J. M.
, and
Heitsman
,
J.
,
2012
, “
A Three-Compartment Muscle Fatigue Model Accurately Predicts Joint-Specific Maximum Endurance Times for Sustained Isometric Tasks
,”
J. Biomech.
,
45
(
10
), pp.
1803
1808
.10.1016/j.jbiomech.2012.04.018
29.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
Soc. Ind. Appl. Math.
,
47
(
1
), pp.
99
131
.10.1137/S0036144504446096
30.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2005
, “
Function-Transformation Methods for Multi-Objective Optimization
,”
Eng. Optim.
,
37
(
6
), pp.
551
570
.10.1080/03052150500114289
31.
Arefeen
,
A.
, and
Xiang
,
Y.
,
2023
, “
Subject Specific Optimal Control of Powered Knee Exoskeleton to Assist Human Lifting Tasks Under Controlled Environment
,”
Robotica
,
41
(
9
), pp.
2809
2828
.10.1017/S0263574723000693
32.
Arefeen
,
A.
, and
Xiang
,
Y.
,
2024
, “
Artificial Neural Network-Based Control of Powered Knee Exoskeletons for Lifting Tasks: Design and Experimental Validation
,”
Robotica
,
42
(
9
), pp.
2949
2968
.10.1017/S0263574724001206
33.
Barman
,
S.
,
2024
, “
Fatigue-Based Posture and Motion Predictions
,”
Ph.D. dissertation
,
Oklahoma State University
,
Stillwater, OK
.https://www.proquest.com/openview/87b5eef79ba8d9456e4934afbda93b15/1?cbl=18750&diss=y&pq-origsite=gscholar
You do not currently have access to this content.