Abstract

Ultrasonically assisted cutting (UAC), a process characterized by high-performance material removal and enhanced surface finish, is widely employed in orthopedic surgery. However, variability in the mechanical properties of cortical bone may lead to unstable fractures and fluctuating cutting force during material removal, particularly under high-frequency vibration cutting. This study introduces a transient shear strength model that utilizes strain rate fluctuations to estimate cutting forces in the UAC process. The impact of varying osteon orientations and strain rate ranges on the yield strength of cortical bone is analyzed to elucidate changes in its mechanical properties under UAC conditions. Additionally, strain rates from conventional cutting (CC) and UAC, measured through digital image correlation (DIC), are compared with model predictions. The results demonstrate that the proposed model accurately predicts cutting forces and associated changes in thrust. This research offers a fresh insight into the dynamics of fluctuating forces during UAC, potentially inspiring advancements in orthopedic surgical instruments.

References

1.
Wang
,
X. D.
,
Masilamani
,
N.
,
Mabrey
,
J.
,
Alder
,
M.
, and
Agrawal
,
C.
,
1998
, “
Changes in the Fracture Toughness of Bone May Not be Reflected in Its Mineral Density, Porosity, and Tensile Properties
,”
Bone
,
23
(
1
), pp.
67
72
.10.1016/S8756-3282(98)00071-4
2.
Tahmasbi
,
V.
,
Qasemi
,
M.
,
Ghasemi
,
R.
, and
Gholami
,
R.
,
2022
, “
Experimental Study and Sensitivity Analysis of Force Behavior in Cortical Bone Milling
,”
Med. Eng. Phys.
,
105
, p.
103821
.10.1016/j.medengphy.2022.103821
3.
Zhang
,
Y.
,
Robles-Linares
,
J. A.
,
Chen
,
L.
,
Liao
,
Z.
,
Shih
,
A. J.
, and
Wang
,
C.
,
2022
, “
Advances in Machining of Hard Tissues – From Material Removal Mechanisms to Tooling Solutions
,”
Int. J. Mach. Tools Manuf.
,
172
, p.
103838
.10.1016/j.ijmachtools.2021.103838
4.
Bai
,
L.
,
Yang
,
J.
,
Chen
,
X.
,
Sun
,
Y.
, and
Li
,
X.
,
2019
, “
Medical Robotics in Bone Fracture Reduction Surgery: A Review
,”
Sensors
,
19
(
16
), p.
3593
.10.3390/s19163593
5.
Zawadzki
,
P.
, and
Talar
,
R.
,
2022
, “
Bone Abrasive Machining: Influence of Tool Geometry and Cortical Bone Anisotropic Structure on Crack Propagation
,”
J. Funct. Biomater.
,
13
(
3
), p.
154
.10.3390/jfb13030154
6.
Sugita
,
N.
,
Osa
,
T.
,
Aoki
,
R.
, and
Mitsuishi
,
M.
,
2009
, “
A New Cutting Method for Bone Based on Its Crack Propagation Characteristics
,”
CIRP Ann.-Manuf. Technol.
,
58
(
1
), pp.
113
118
.10.1016/j.cirp.2009.03.057
7.
Liu
,
J.
,
Dai
,
X.
, and
Wu
,
L.
,
2023
, “
Analysis of Accuracy in Determining Cortical Bone Fracture Under Different Strains Under Compressive Load
,”
J. Med. Biomech.
,
38
, pp.
718
723
.
8.
Zimmermann
,
E. A.
,
Launey
,
M. E.
, and
Ritchie
,
R. O.
,
2010
, “
The Significance of Crack-Resistance Curves to the Mixed-Mode Fracture Toughness of Human Cortical Bone
,”
Biomaterials
,
31
(
20
), pp.
5297
5305
.10.1016/j.biomaterials.2010.03.056
9.
Ritchie
,
R. O.
,
Buehler
,
M. J.
, and
Hansma
,
P.
,
2009
, “
Plasticity and Toughness in Bone
,”
Phys. Today
,
62
(
6
), pp.
41
47
.10.1063/1.3156332
10.
Ural
,
A.
, and
Vashishth
,
D.
,
2014
, “
Hierarchical Perspective of Bone Toughness–From Molecules to Fracture
,”
Int. Mater. Rev.
,
59
(
5
), pp.
245
263
.10.1179/1743280414Y.0000000031
11.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Buehler
,
M. J.
,
2012
, “
Viscoelastic Properties of Model Segments of Collagen Molecules
,”
Matrix Biol.
,
31
(
2
), pp.
141
149
.10.1016/j.matbio.2011.11.005
12.
Zimmermann
,
E. A.
,
Gludovatz
,
B.
,
Schaible
,
E.
,
Busse
,
B.
, and
Ritchie
,
R. O.
,
2014
, “
Fracture Resistance of Human Cortical Bone Across Multiple Length-Scales at Physiological Strain Rates
,”
Biomaterials
,
35
(
21
), pp.
5472
5481
.10.1016/j.biomaterials.2014.03.066
13.
Silva-Henao
,
J. D.
,
Rueda Esteban
,
R. J.
,
Marañon-Leon
,
A.
, and
Casas-Rodríguez
,
J. P.
,
2020
, “
Post-Yield Mechanical Properties of Bovine Trabecular Bone–Relationships With Bone Volume Fraction and Strain Rate
,”
Eng. Fract. Mech.
,
233
, p.
107053
.10.1016/j.engfracmech.2020.107053
14.
Casari
,
D.
,
Michler
,
J.
,
Zysset
,
P.
, and
Schwiedrzik
,
J.
,
2021
, “
Microtensile Properties and Failure Mechanisms of Cortical Bone at the Lamellar Level
,”
Acta Biomater.
,
120
, pp.
135
145
.10.1016/j.actbio.2020.04.030
15.
Jacobs
,
C.
,
Pope
,
M.
,
Berry
,
J.
, and
Hoaglund
,
F.
,
1974
, “
A Study of the Bone Machining Process—Orthogonal Cutting
,”
J. Biomech.
,
7
(
2
), pp.
131
136
.10.1016/0021-9290(74)90051-7
16.
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2009
, “
Specifications for Machining the Bovine Cortical Bone in Relation to Its Microstructure
,”
J. Biomech.
,
42
(
16
), pp.
2826
2829
.10.1016/j.jbiomech.2009.08.017
17.
Liao
,
Z.
, and
Axinte
,
D. A.
,
2016
, “
On Chip Formation Mechanism in Orthogonal Cutting of Bone
,”
Int. J. Mach. Tools Manuf.
,
102
, pp.
41
55
.10.1016/j.ijmachtools.2015.12.004
18.
Bai
,
W.
,
Shu
,
L.
,
Sun
,
R.
,
Xu
,
J.
,
Silberschmidt
,
V. V.
, and
Sugita
,
N.
,
2020
, “
Mechanism of Material Removal in Orthogonal Cutting of Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
104
, p.
103618
.10.1016/j.jmbbm.2020.103618
19.
Wang
,
H.
,
Satake
,
U.
, and
Enomoto
,
T.
,
2023
, “
Serrated Chip Formation Mechanism in Orthogonal Cutting of Cortical Bone at Small Depths of Cut
,”
J. Mater. Process. Technol.
,
319
, p.
118097
.10.1016/j.jmatprotec.2023.118097
20.
Aro
,
H.
,
Kallioniemi
,
H.
,
Aho
,
A.
, and
Kellokumpu-Lehtinen
,
P.
,
1981
, “
Ultrasonic Device in Bone Cutting: A Histological and Scanning Electron Microscopical Study
,”
Acta Orthop.
,
52
(
1
), pp.
5
10
.10.3109/17453678108991750
21.
Cardoni
,
A.
,
MacBeath
,
A.
, and
Lucas
,
M.
,
2006
, “
Methods for Reducing Cutting Temperature in Ultrasonic Cutting of Bone
,”
Ultrasonics
,
44
(
1
), pp.
e37
e42
.10.1016/j.ultras.2006.06.046
22.
Alam
,
K.
,
Khan
,
M.
, and
Silberschmidt
,
V. V.
,
2013
, “
Analysis of Forces in Conventional and Ultrasonically Assisted Plane Cutting of Cortical Bone
,”
Proc. Inst. Mech. Eng. H
,
227
(
6
), pp.
636
642
.10.1177/0954411913485042
23.
Shu
,
L.
, and
Sugita
,
N.
,
2020
, “
Analysis of Fracture, Force, and Temperature in Orthogonal Elliptical Vibration-Assisted Bone Cutting
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103599
.10.1016/j.jmbbm.2019.103599
24.
Bai
,
W.
,
Shu
,
L.
,
Sun
,
R.
,
Xu
,
J.
,
Silberschmidt
,
V. V.
, and
Sugita
,
N.
,
2020
, “
Improvements of Material Removal in Cortical Bone Via Impact Cutting Method
,”
J. Mech. Behav. Biomed. Mater.
,
108
, p.
103791
.10.1016/j.jmbbm.2020.103791
25.
Bai
,
W.
,
Zhai
,
Y.
,
Zhao
,
J.
,
Han
,
G.
,
Ye
,
L.
,
Zhu
,
X.
,
Shu
,
L.
, and
Wang
,
D.
,
2023
, “
Experimental Investigation of Material Removal in Elliptical Vibration Cutting of Cortical Bone
,”
Chin. J. Mech. Eng.
,
36
(
1
), p.
52
.10.1186/s10033-023-00879-5
26.
Al-Abdullah
,
K. I. A-L.
,
Abdi
,
H.
,
Lim
,
C. P.
, and
Yassin
,
W. A.
,
2018
, “
Force and Temperature Modelling of Bone Milling Using Artificial Neural Networks
,”
Measurement
,
116
, pp.
25
37
.10.1016/j.measurement.2017.10.051
27.
Chen
,
Q.-S.
,
Dai
,
L.
,
Liu
,
Y.
, and
Shi
,
Q.-X.
,
2020
, “
A Cortical Bone Milling Force Model Based on Orthogonal Cutting Distribution Method
,”
Adv. Manuf.
,
8
(
2
), pp.
204
215
.10.1007/s40436-020-00300-7
28.
Wang
,
L.
,
Liu
,
Y.
,
Li
,
J.
,
Sun
,
Y.
,
Wang
,
R.
,
Zou
,
Q.
, and
Shu
,
B.
,
2023
, “
Indirect Measurement Method of Ultrasonic Bone Cutting Force Based on Anti-Node Vibration Displacement
,”
J. Sound Vib.
,
552
, p.
117637
.10.1016/j.jsv.2023.117637
29.
Bai
,
W.
,
Zhai
,
Y.
,
Zhao
,
J.
,
Jia
,
X.
, and
Han
,
G.
,
2023
, “
Characterization of Ultrasonically Assisted Orthogonal Cutting of Bone Using Digital Image Correlation Analysis
,”
ASME J. Manuf. Sci. Eng.
,
145
, p.
111002
.10.1115/1.4062942
30.
Tsai
,
J.-L.
, and
Sun
,
C.
,
2005
, “
Strain Rate Effect on In-Plane Shear Strength of Unidirectional Polymeric Composites
,”
Compos. Sci. Technol.
,
65
, pp.
1941
1947
.10.1016/j.compscitech.2005.01.013
31.
Liao
,
Z.
,
Axinte
,
D.
, and
Gao
,
D.
,
2019
, “
On Modelling of Cutting Force and Temperature in Bone Milling
,”
J. Mater. Process Technol.
,
266
, pp.
627
638
.10.1016/j.jmatprotec.2018.11.039
32.
Xiao
,
M.
,
Karube
,
S.
,
Soutome
,
T.
, and
Sato
,
K.
,
2002
, “
Analysis of Chatter Suppression in Vibration Cutting
,”
Int. J. Mach. Tools Manuf.
,
42
(
15
), pp.
1677
1685
.10.1016/S0890-6955(02)00077-9
33.
Ying
,
Z.
,
Shu
,
L.
, and
Sugita
,
N.
,
2020
, “
Experimental and Finite Element Analysis of Force and Temperature in Ultrasonic Vibration Assisted Bone Cutting
,”
Ann. Biomed. Eng.
,
48
(
4
), pp.
1281
1290
.10.1007/s10439-020-02452-w
34.
Anderson
,
T. L.
, and
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
, Boca Raton, FL.
35.
Uniyal
,
P.
,
Kaur
,
S.
,
Dhiman
,
V.
,
Bhadada
,
S. K.
, and
Kumar
,
N.
,
2023
, “
Effect of Inelastic Deformation on Strain Rate-Dependent Mechanical Behaviour of Human Cortical Bone
,”
J. Biomech.
,
161
, p.
111853
.10.1016/j.jbiomech.2023.111853
36.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1974
, “
The Mechanical Properties of Cortical Bone
,”
JBJS Rev.
,
56
, pp.
1001
1022
.10.2106/00004623-197456050-00012
37.
Kemper
,
N.
,
Davison
,
N.
,
Fitzpatrick
,
D.
,
Marshall
,
R.
,
Lin
,
A.
,
Mundy
,
K.
, and
Cobb
,
R. R.
,
2011
, “
Characterization of the Mechanical Properties of Bovine Cortical Bone Treated With a Novel Tissue Sterilization Process
,”
Cell Tissue Bank
,
12
(
4
), pp.
273
279
.10.1007/s10561-010-9191-7
38.
Pan
,
B.
,
Li
,
K.
, and
Tong
,
W.
,
2013
, “
Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations
,”
Exp. Mech.
,
53
(
7
), pp.
1277
1289
.10.1007/s11340-013-9717-6
39.
Dong
,
X. N.
,
Zhang
,
X.
, and
Guo
,
X. E.
,
2005
, “
Interfacial Strength of Cement Lines in Human Cortical Bone
,”
Mol. Cell Biomech.
,
2
, p.
63
.10.3970/mcb.2005.002.063
40.
Che
,
D.
,
Zhu
,
W.-L.
, and
Ehmann
,
K. F.
,
2016
, “
Chipping and Crushing Mechanisms in Orthogonal Rock Cutting
,”
Int. J. Mech. Sci.
,
119
, pp.
224
236
.10.1016/j.ijmecsci.2016.10.020
You do not currently have access to this content.