Graphical Abstract Figure

An open-source program that can generate three-dimensional models of micron-scale cortical bone was developed. The program can generate samples with specific desired pore geometries.

Graphical Abstract Figure

An open-source program that can generate three-dimensional models of micron-scale cortical bone was developed. The program can generate samples with specific desired pore geometries.

Close modal

Abstract

Evaluating the contribution of microstructure to overall bone strength is tricky since it is difficult to control changes to pore structure in human or animal samples. We developed an open-source program that can generate three-dimensional (3D) models of micron-scale cortical bone. These models can be highly customized with a wide array of variable input parameters to allow for generation of samples similar to micro-computed topography scans of cortical bone or with specific geometric features. The program can generate samples with specific desired porosities and minor deviations in pore diameter from human samples: 1.67% (±4.90) using literature values, and 1.36% (±2.39) with optimized values. When coupled with finite element analysis, this open-source program could be a useful tool for evaluating stress distributions caused by microstructural changes.

References

1.
Wu
,
A.-M.
,
Bisignano
,
C.
,
James
,
S. L.
,
Abady
,
G. G.
,
Abedi
,
A.
,
Abu-Gharbieh
,
E.
,
Alhassan
,
R. K.
, et al.,
2021
, “
Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990–2019: A Systematic Analysis From the Global Burden of Disease Study 2019
,”
Lancet Healthy Longevity
,
2
(
9
), pp.
e580
e592
.10.1016/S2666-7568(21)00172-0
2.
Burge
,
R.
,
Dawson-Hughes
,
B.
,
Solomon
,
D. H.
,
Wong
,
J. B.
,
King
,
A.
, and
Tosteson
,
A.
,
2007
, “
Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025
,”
J. Bone Miner. Res.
,
22
(
3
), pp.
465
475
.10.1359/jbmr.061113
3.
Orsini
,
L. S.
,
Rousculp
,
M. D.
,
Long
,
S. R.
, and
Wang
,
S.
,
2004
, “
Health Care Utilization and Expenditures in the United States: A Study of Osteoporosis-Related Fractures
,”
Osteoporosis Int.
,
16
(
4
), pp.
359
371
.10.1007/s00198-004-1694-2
4.
Waterman
,
B. R.
,
Gun
,
B.
,
Bader
,
J. O.
,
Orr
,
J. D.
, and
Belmont
,
P. J.
, Jr.
,
2016
, “
Epidemiology of Lower Extremity Stress Fractures in the United States Military
,”
Mil. Med.
,
181
(
10
), pp.
1308
1313
.10.7205/MILMED-D-15-00571
5.
Rizzone
,
K. H.
,
Ackerman
,
K. E.
,
Roos
,
K. G.
,
Dompier
,
T. P.
, and
Kerr
,
Z. Y.
,
2017
, “
The Epidemiology of Stress Fractures in Collegiate Student-Athletes, 2004–2005 Through 2013–2014 Academic Years
,”
J. Athletic Train.
,
52
(
10
), pp.
966
975
.10.4085/1062-6050-52.8.01
6.
Knowles
,
S. B.
,
Marshall
,
S. W.
, and
Guskiewicz
,
K. M.
,
2006
, “
Issues in Estimating Risks and Rates in Sports Injury Research
,”
J. Athletic Train.
,
41
(
2
), pp.
207
215
.https://pmc.ncbi.nlm.nih.gov/articles/PMC1472638/
7.
Ott
,
S. M.
,
2018
, “
Cortical or Trabecular Bone: What's the Difference?
,”
Am. J. Nephrol.
,
47
(
6
), pp.
373
375
.10.1159/000489672
8.
Augat
,
P.
, and
Schorlemmer
,
S.
,
2006
, “
The Role of Cortical Bone and Its Microstructure in Bone Strength
,”
Age Ageing
,
35
(
suppl_2
), pp.
ii27
ii31
.10.1093/ageing/afl081
9.
Lewis
,
K. J.
,
Frikha-Benayed
,
D.
,
Louie
,
J.
,
Stephen
,
S.
,
Spray
,
D. C.
,
Thi
,
M. M.
,
Seref-Ferlengez
,
Z.
,
Majeska
,
R. J.
,
Weinbaum
,
S.
, and
Schaffler
,
M. B.
,
2017
, “
Osteocyte Calcium Signals Encode Strain Magnitude and Loading Frequency in Vivo
,”
Proc. Natl. Acad. Sci.
,
114
(
44
), pp.
11775
11780
.10.1073/pnas.1707863114
10.
Hadjidakis
,
D. J.
, and
Androulakis
,
I. I.
,
2006
, “
Bone Remodeling
,”
Ann. New York Acad. Sci.
,
1092
(
1
), pp.
385
396
.10.1196/annals.1365.035
11.
Jaworski
,
Z. F.
,
Meunier
,
P.
, and
Frost
,
H. M.
,
1972
, “
Observations on Two Types of Resorption Cavities in Human Lamellar Cortical Bone
,”
Clin. Orthop. Relat. Res.
,
83
, pp.
279
285
.10.1097/00003086-197203000-00048
12.
Cooper
,
D. M. L.
,
Kawalilak
,
C. E.
,
Harrison
,
K.
,
Johnston
,
B. D.
, and
Johnston
,
J. D.
,
2016
, “
Cortical Bone Porosity: What Is It, Why Is It Important, and How Can We Detect It?
,”
Curr. Osteoporosis Rep.
,
14
(
5
), pp.
187
198
.10.1007/s11914-016-0319-y
13.
Turnbull
,
T. L.
,
Gargac
,
J. A.
,
Niebur
,
G. L.
, and
Roeder
,
R. K.
,
2011
, “
Detection of Fatigue Microdamage in Whole Rat Femora Using Contrast-Enhanced Micro-Computed Tomography
,”
J. Biomech.
,
44
(
13
), pp.
2395
2400
.10.1016/j.jbiomech.2011.06.032
14.
Turnbull
,
T. L.
,
Baumann
,
A. P.
, and
Roeder
,
R. K.
,
2014
, “
Fatigue Microcracks That Initiate Fracture Are Located Near Elevated Intracortical Porosity but Not Elevated Mineralization
,”
J. Biomech.
,
47
(
12
), pp.
3135
3142
.10.1016/j.jbiomech.2014.06.022
15.
Gargac
,
J. A.
,
Turnbull
,
T. L.
,
Roeder
,
R. K.
, and
Niebur
,
G. L.
,
2014
, “
A Probabilistic Damage Model Based on Direct 3-D Correlation of Strain to Damage Formation Following Fatigue Loading of Rat Femora
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
234
243
.10.1016/j.jmbbm.2013.11.009
16.
Grimal
,
Q.
,
Haupert
,
S.
,
Mitton
,
D.
,
Vastel
,
L.
, and
Laugier
,
P.
,
2009
, “
Assessment of Cortical Bone Elasticity and Strength: Mechanical Testing and Ultrasound Provide Complementary Data
,”
Med. Eng. Phys.
,
31
(
9
), pp.
1140
1147
.10.1016/j.medengphy.2009.07.011
17.
Duchemin
,
L.
,
Bousson
,
V.
,
Raossanaly
,
C.
,
Bergot
,
C.
,
Laredo
,
J. D.
,
Skalli
,
W.
, and
Mitton
,
D.
,
2008
, “
Prediction of Mechanical Properties of Cortical Bone by Quantitative Computed Tomography
,”
Med. Eng. Phys.
,
30
(
3
), pp.
321
328
.10.1016/j.medengphy.2007.04.008
18.
Keyak
,
J. H.
,
Rossi
,
S. A.
,
Jones
,
K. A.
,
Les
,
C. M.
, and
Skinner
,
H. B.
,
2001
, “
Prediction of Fracture Location in the Proximal Femur Using Finite Element Models
,”
Med. Eng. Phys.
,
23
(
9
), pp.
657
664
.10.1016/S1350-4533(01)00094-7
19.
Bakalova
,
L. P.
,
Andreasen
,
C. M.
,
Thomsen
,
J. S.
,
Brüel
,
A.
,
Hauge
,
E.-M.
,
Kiil
,
B. J.
,
Delaisse
,
J.-M.
,
Andersen
,
T. L.
, and
Kersh
,
M. E.
,
2018
, “
Intracortical Bone Mechanics Are Related to Pore Morphology and Remodeling in Human Bone
,”
J. Bone Miner. Res.
,
33
(
12
), pp.
2177
2185
.10.1002/jbmr.3561
20.
Heřt
,
J.
,
Fiala
,
P.
, and
Petrtýl
,
M.
,
1994
, “
Osteon Orientation of the Diaphysis of the Long Bones in Man
,”
Bone
,
15
(
3
), pp.
269
277
.10.1016/8756-3282(94)90288-7
21.
Pazzaglia
,
U. E.
,
Congiu
,
T.
,
Raspanti
,
M.
,
Ranchetti
,
F.
, and
Quacci
,
D.
,
2009
, “
Anatomy of the Intracortical Canal System: Scanning Electron Microscopy Study in Rabbit Femur
,”
Clin. Orthop. Relat. Res.
,
467
(
9
), pp.
2446
2456
.10.1007/s11999-009-0806-x
22.
Congiu
,
T.
, and
Pazzaglia
,
U. E.
,
2010
, “
The Sealed Osteons of Cortical Diaphyseal Bone. Early Observations Revisited With Scanning Electron Microscopy
,”
Anat. Rec.
,
294
(
2
), pp.
193
198
.10.1002/ar.21309
23.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
24.
Kunzelmann
,
K.-H.
,
2009
, “
KHKs ImageJ I/O Utilities
,” ProjetUrbain, accessed June 7, 2024, http://www.kunzelmann.de/4_software-imagej-import-export-utilities.html
25.
Lawrence-Jones
,
J.
,
2016
, “
Connected Component Labeling
,” Github, accessed June 7, 2024, https://github.com/jacklj/ccl
26.
Maggiano
,
I. S.
,
Maggiano
,
C. M.
,
Clement
,
J. G.
,
Thomas
,
C. D. L.
,
Carter
,
Y.
, and
Cooper
,
D. M. L.
,
2016
, “
Three-Dimensional Reconstruction of Haversian Systems in Human Cortical Bone Using Synchrotron Radiation-Based micro-CT: Morphology and Quantification of Branching and Transverse Connections Across Age
,”
J. Anat.
,
228
(
5
), pp.
719
732
.10.1111/joa.12430
27.
Wang
,
M.
,
Zimmerman
,
E. A.
,
Riedel
,
C.
,
Busse
,
B.
,
Li
,
S.
, and
Silberschmidt
,
V. V.
,
2017
, “
Effect of Micro-Morphology of Cortical Bone Tissue on Fracture Toughness and Crack Propagation
,”
Proc. Struct. Integr.
,
6
, pp.
64
68
.10.1016/j.prostr.2017.11.010
28.
Nguyen
,
V.-H.
,
Lemaire
,
T.
, and
Naili
,
S.
,
2010
, “
Poroelastic Behaviour of Cortical Bone Under Harmonic Axial Loading: A Finite Element Study at the Osteonal Scale
,”
Med. Eng. Phys.
,
32
(
4
), pp.
384
390
.10.1016/j.medengphy.2010.02.001
29.
Kolmakova
,
T.
,
2015
, “
Computer Modelling of the Structure of the Cortical and Trabecular Bone Tissue
,”
AIP Conf. Proc.
,
1683
, p.
020087
.10.1063/1.4932777
30.
Demirtas
,
A.
,
Curran
,
E.
, and
Ural
,
A.
,
2016
, “
Assessment of the Effect of Reduced Compositional Heterogeneity on Fracture Resistance of Human Cortical Bone Using Finite Element Modeling
,”
Bone
,
91
, pp.
92
101
.10.1016/j.bone.2016.07.015
31.
Khor
,
F.
,
Cronin
,
D. S.
,
Watson
,
B.
,
Gierczycka
,
D.
, and
Malcolm
,
S.
,
2018
, “
Importance of Asymmetry and Anisotropy in Predicting Cortical Bone Response and Fracture Using Human Body Model Femur in Three-Point Bending and Axial Rotation
,”
J. Mech. Behav. Biomed. Mater.
,
87
, pp.
213
229
.10.1016/j.jmbbm.2018.07.033
32.
Wang
,
Y.
, and
Ural
,
A.
,
2018
, “
Mineralized Collagen Fibril Network Spatial Arrangement Influences Cortical Bone Fracture Behavior
,”
J. Biomech.
,
66
, pp.
70
77
.10.1016/j.jbiomech.2017.10.038
33.
Rouhi
,
G.
,
Vahdati
,
A.
,
Li
,
X.
, and
Sudak
,
L.
,
2015
, “
A Three-Dimensional Computer Model to Simulate Spongy Bone Remodeling Under Overload Using a Semi-Mechanistic Bone Remodeling Theory
,”
J. Mech. Med. Mechanobiol.
,
15
(
4
), p.
1550061
.10.1142/S021951941550061X
34.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures
,”
IEEE Trans. Visualization Comput. Graph.
,
24
(
2
), pp.
1127
1140
.10.1109/TVCG.2017.2655523
35.
Barati
,
D.
,
Karaman
,
O.
,
Moeinzadeh
,
S.
,
Kader
,
S.
, and
Jabbari
,
E.
,
2019
, “
Material and Regenerative Properties of an Osteon-Mimetic Cortical Bone-Like Scaffold
,”
Regener. Biomater.
,
6
(
2
), pp.
89
98
.10.1093/rb/rbz008
36.
Coelho
,
P. G.
,
Fernandes
,
P. R.
,
Rodrigues
,
H. C.
,
Cardoso
,
J. B.
, and
Guedes
,
J. M.
,
2009
, “
Numerical Modeling of Bone Tissue Adaptation—A Hierarchical Approach for Bone Apparent Density and Trabecular Structure
,”
J. Biomech.
,
42
(
7
), pp.
830
837
.10.1016/j.jbiomech.2009.01.020
37.
Predoi-Racila
,
M.
, and
Crolet
,
J. M.
,
2008
, “
Human Cortical Bone: The SiNuPrOs Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
2
), pp.
169
187
.10.1080/10255840701695140
38.
Robles-Linares
,
J. A.
,
Ramírez-Cedillo
,
E.
,
Siller
,
H.
,
Rodríguez
,
C. A.
, and
Martínez-López
,
J. I.
,
2019
, “
Parametric Modeling of Biomimetic Cortical Bone Microstructure for Additive Manufacturing
,”
Materials
,
12
(
6
), p.
913
.10.3390/ma12060913
39.
Schaffler
,
M. B.
, and
Burr
,
D. B.
,
1988
, “
Stiffness of Compact Bone: Effects of Porosity and Density
,”
J. Biomech.
,
21
(
1
), pp.
13
16
.10.1016/0021-9290(88)90186-8
40.
Pazzaglia
,
U. E.
,
Zarattini
,
G.
,
Giacomini
,
D.
,
Rodella
,
L.
,
Menti
,
A. M.
, and
Feltrin
,
G.
,
2010
, “
Morphometric Analysis of the Canal System of Cortical Bone: An Experimental Study in the Rabbit Femur Carried Out With Standard Histology and Micro-CT
,”
Anat., Histol., Embryol.
,
39
(
1
), pp.
17
26
.10.1111/j.1439-0264.2009.00973.x
41.
Tsukamoto
,
M.
,
Okimoto
,
N.
,
Mori
,
M.
,
Yoshioka
,
T.
,
Asano
,
K.
,
Ikejiri
,
Y.
,
Uzawa
,
T.
, et al.,
2021
, “
Bone Microstructure Changes Due to Once-/Twice-Weekly Teriparatide Administration: A Report of Five Cases Using High-Resolution Peripheral Quantitative Computed Tomography
,”
Mod. Rheumatol. Case Rep.
,
6
(
2
), pp.
301
304
.10.1093/mrcr/rxab048
You do not currently have access to this content.