Graphical Abstract Figure

Development of a wrist finite element model and two-part validation using tendon-driven and metacarpal-driven loads.

Graphical Abstract Figure

Development of a wrist finite element model and two-part validation using tendon-driven and metacarpal-driven loads.

Close modal

Abstract

This study presents a comprehensive finite element (FE) model for the human wrist, constructed from a CT scan of a 68-year-old male (type 1 wrist). This model intricately captures the bone and soft tissue geometries to study the biomechanics of wrist axial loading through tendon-driven simulations and grasping biomechanics using metacarpal loads. Validation is carried out by assessing the radial and ulnar axial loading distribution, radiocarpal articulation contact patterns, and other standard finite element metrics. The results show radial transmission of the load, consistent with results from wrist finite element models conducted in the last decade and other experimental studies. Our results confirm the model's efficacy in reproducing key known biomechanical aspects, laying the groundwork for future investigations into ongoing wrist biomechanics challenges and pathology mechanism studies.

References

1.
Werner
,
F. W.
,
Sutton
,
L. G.
,
Allison
,
M. A.
,
Gilula
,
L. A.
,
Short
,
W. H.
, and
Wollstein
,
R.
,
2011
, “
Scaphoid and Lunate Translation in the Intact Wrist and Following Ligament Resection: A Cadaver Study
,”
J. Hand Surg. Am.
,
36
(
2
), pp.
291
298
.10.1016/j.jhsa.2010.11.023
2.
Moritomo
,
H.
,
2012
, “
The Distal Interosseous Membrane: Current Concepts in Wrist Anatomy and Biomechanics
,”
J. Hand Surg. Am.
,
37
(
7
), pp.
1501
1507
.10.1016/j.jhsa.2012.04.037
3.
Bettinger
,
P. C.
,
Linscheid
,
R. L.
,
Berger
,
R. A.
,
Cooney
,
W. P.
, and
An
,
K.-N.
,
1999
, “
An Anatomic Study of the Stabilizing Ligaments of the Trapezium and Trapeziometacarpal Joint
,”
J. Hand Surg. Am.
,
24
(
4
), pp.
786
798
.10.1053/jhsu.1999.0786
4.
Bettinger
,
P. C.
,
Smutz
,
W. P.
,
Linscheid
,
R. L.
,
Cooney
,
W. P.
, and
An
,
K.-N.
,
2000
, “
Material Properties of the Trapezial and Trapeziometacarpal Ligaments
,”
J. Hand Surg. Am.
,
25
(
6
), pp.
1085
1095
.10.1053/jhsu.2000.18487
5.
Varga
,
P.
,
Schefzig
,
P.
,
Unger
,
E.
,
Mayr
,
W.
,
Zysset
,
P. K.
, and
Erhart
,
J.
,
2013
, “
Finite Element Based Estimation of Contact Areas and Pressures of the Human Scaphoid in Various Functional Positions of the Hand
,”
J. Biomech.
,
46
(
5
), pp.
984
990
.10.1016/j.jbiomech.2012.11.053
6.
Werner
,
F. W.
,
Palmer
,
A. K.
,
Somerset
,
J. H.
,
Tong
,
J. J.
,
Gillison
,
D. B.
,
Fortino
,
M. D.
, and
Short
,
W. H.
,
1996
, “
Wrist Joint Motion Simulator
,”
J. Orthop. Res.
,
14
(
4
), pp.
639
646
.10.1002/jor.1100140420
7.
Smith
,
J. M.
,
Werner
,
F. W.
, and
Harley
,
B. J.
,
2018
, “
Forces in the Distal Radius During a Pushup or Active Wrist Motions
,”
J. Hand Surg. Am.
,
43
(
9
), pp.
806
811
.10.1016/j.jhsa.2018.05.020
8.
Miyake
,
T.
,
Hashizume
,
H.
,
Inoue
,
H.
,
Shi
,
Q.
, and
Nagayama
,
N.
,
1994
, “
Malunited Colles' Fracture
,”
J. Hand Surg.
,
19
(
6
), pp.
737
742
.10.1016/0266-7681(94)90248-8
9.
Arnold
,
N.
,
Scott
,
J.
, and
Bush
,
T. R.
,
2023
, “
A Review of the Characterizations of Soft Tissues Used in Human Body Modeling: Scope, Limitations, and the Path Forward
,”
J. Tissue Viability
,
32
(
2
), pp.
286
304
.10.1016/j.jtv.2023.02.003
10.
Gómez-González
,
M.
,
Latorre
,
E.
,
Arroyo
,
M.
, and
Trepat
,
X.
,
2020
, “
Measuring Mechanical Stress in Living Tissues
,”
Nat. Rev. Phys.
,
2
(
6
), pp.
300
317
.10.1038/s42254-020-0184-6
11.
Chethan
,
K. N.
,
Shyamasunder Bhat
,
N.
,
Zuber
,
M.
, and
Satish Shenoy
,
B.
,
2019
, “
Finite Element Analysis of Different Hip Implant Designs Along With Femur Under Static Loading Conditions
,”
J. Biomed. Phys. Eng.
,
9
(
5
), pp.
507
516
.10.31661/jbpe.v0i0.1210
12.
Chen
,
C.-F.
,
Huang
,
W.-C.
,
Liu
,
S.-H.
,
Wang
,
L.-L.
,
Liu
,
P.-F.
,
Chen
,
P.-H.
, and
Chen
,
C.-M.
,
2024
, “
Use of Customized 3-Dimensional Printed Mandibular Prostheses With a Dental Implant Pressure-Reducing Device in Mandibular Body Defect: A Finite Element Study Performing Multiresponse Surface Methodology
,”
J. Dent. Sci.
,
19
(
1
), pp.
502
514
.10.1016/j.jds.2023.09.011
13.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.10.1115/1.1470171
14.
Gislason
,
M. K.
,
Stansfield
,
B.
, and
Nash
,
D. H.
,
2010
, “
Finite Element Model Creation and Stability Considerations of Complex Biological Articulation: The Human Wrist Joint
,”
Med. Eng. Phys.
,
32
(
5
), pp.
523
531
.10.1016/j.medengphy.2010.02.015
15.
Bajuri
,
M. N.
,
Abdul Kadir
,
M. R.
,
Murali
,
M. R.
, and
Kamarul
,
T.
,
2013
, “
Biomechanical Analysis of the Wrist Arthroplasty in Rheumatoid Arthritis: A Finite Element Analysis
,”
Med. Biol. Eng. Comput.
,
51
(
1–2
), pp.
175
186
.10.1007/s11517-012-0982-9
16.
Wei
,
Y.
,
Zou
,
Z.
,
Wei
,
G.
,
Ren
,
L.
, and
Qian
,
Z.
,
2019
, “
Subject-Specific Finite Element Modelling of the Human Hand Complex: Muscle-Driven Simulations and Experimental Validation
,”
Ann. Biomed. Eng.
,
48
(
4
), pp.
1181
1195
.10.1007/s10439-019-02439-2
17.
Durand
,
S.
,
2020
, “
Modélisation musculo-quelettique de la main et du poignet en utilisant des radiographies biplanes
,” Theses,
HESAM Université
, Paris, France, accessed Feb. 26, 2024, https://theses.hal.science/tel-03369965
18.
Bailey
,
S.
, and
Vashishth
,
D.
,
2018
, “
Mechanical Characterization of Bone: State of the Art in Experimental Approaches—What Types of Experiments Do People Do and How Does One Interpret the Results?
,”
Curr. Osteoporosis Rep.
,
16
(
4
), pp.
423
433
.10.1007/s11914-018-0454-8
19.
Burkhart
,
T. A.
,
Andrews
,
D. M.
, and
Dunning
,
C. E.
,
2013
, “
Finite Element Modeling Mesh Quality, Energy Balance and Validation Methods: A Review With Recommendations Associated With the Modeling of Bone Tissue
,”
J. Biomech.
,
46
(
9
), pp.
1477
1488
.10.1016/j.jbiomech.2013.03.022
20.
Garcia-Elias
,
M.
,
Puig de la Bellacasa
,
I.
, and
Schouten
,
C.
,
2017
, “
Carpal Ligaments
,”
Hand Clin.
,
33
(
3
), pp.
511
520
.10.1016/j.hcl.2017.04.007
21.
Mohammadi
,
H.
,
Mequanint
,
K.
, and
Herzog
,
W.
,
2013
, “
Computational Aspects in Mechanical Modeling of the Articular Cartilage Tissue
,”
Proc. Inst. Mech. Eng. H
,
227
(
4
), pp.
402
420
.10.1177/0954411912470239
22.
Navindaran
,
K.
,
Kang
,
J. S.
, and
Moon
,
K.
,
2023
, “
Techniques for Characterizing Mechanical Properties of Soft Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
138
, p.
105575
.10.1016/j.jmbbm.2022.105575
23.
Dreischarf
,
M.
,
Zander
,
T.
,
Shirazi-Adl
,
A.
,
Puttlitz
,
C. M.
,
Adam
,
C. J.
,
Chen
,
C. S.
,
Goel
,
V. K.
, et al.,
2014
, “
Comparison of Eight Published Static Finite Element Models of the Intact Lumbar Spine: Predictive Power of Models Improves When Combined Together
,”
J. Biomech.
,
47
(
8
), pp.
1757
1766
.10.1016/j.jbiomech.2014.04.002
24.
Liu
,
F.
,
Feng
,
X.
,
Zheng
,
J.
,
Leung
,
F.
, and
Chen
,
B.
,
2022
, “
Biomechanical Comparison of the Undercut Thread Design Versus Conventional Buttress Thread for the Lag Screw of the Dynamic Hip Screw System
,”
Front. Bioeng. Biotechnol.
,
10
, p.
1019172
.10.3389/fbioe.2022.1019172
25.
Palmer
,
A. K.
, and
Werner
,
F. W.
,
1981
, “
The Triangular Fibrocartilage Complex of the Wrist—Anatomy and Function
,”
J. Hand Surg. Am.
,
6
(
2
), pp.
153
162
.10.1016/S0363-5023(81)80170-0
26.
Palmer
,
A. K.
, and
Werner
,
F. W.
,
1984
, “
Biomechanics of the Distal Radioulnar Joint
,”
Clin. Orthop. Relat. Res.
,
187
, pp.
26
35
.https://pubmed.ncbi.nlm.nih.gov/6744728/
27.
Gislason
,
M. K.
,
Stansfield
,
B.
,
Bransby-Zachary
,
M.
,
Hems
,
T.
, and
Nash
,
D. H.
,
2012
, “
Load Transfer Through the Radiocarpal Joint and the Effects of Partial Wrist Arthrodesis on Carpal Bone Behaviour: A Finite Element Study
,”
J. Hand Surg. (Eur. Vol.)
,
37
(
9
), pp.
871
878
.10.1177/1753193412441761
28.
Ramlee
,
M. H.
,
Beng
,
G. K.
,
Bajuri
,
N.
, and
Kadir
,
M. R. A.
,
2017
, “
Finite Element Analysis of the Wrist in Stroke Patients: The Effects of Hand Grip
,”
Med. Biol. Eng. Comput.
,
56
(
7
), pp.
1161
1171
.10.1007/s11517-017-1762-3
29.
Iwamoto
,
M.
,
Nakahira
,
Y.
, and
Kimpara
,
H.
,
2015
, “
Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash
,”
Traffic Inj. Prev.
,
16
(
Suppl. 1
), pp.
S36
S48
.10.1080/15389588.2015.1015000
30.
Viegas
,
S. F.
,
Patterson
,
R. M.
,
Hokanson
,
J. A.
, and
Davis
,
J.
,
1993
, “
Wrist Anatomy: Incidence, Distribution, and Correlation of Anatomic Variations, Tears, and Arthrosis
,”
J. Hand Surg. Am.
,
18
(
3
), pp.
463
475
.10.1016/0363-5023(93)90094-J
31.
Nakamura
,
K.
,
Patterson
,
R. M.
,
Moritomo
,
H.
, and
Viegas
,
S. F.
,
2001
, “
Type I Versus Type II Lunates: Ligament Anatomy and Presence of Arthrosis
,”
J. Hand Surg. Am.
,
26
(
3
), pp.
428
436
.10.1053/jhsu.2001.24140
32.
3D Slicer
, 2024, “
3D Slicer Image Computing Platform
,” 3D Slicer, Clifton Park, New York, accessed Feb. 13, 2024, https://www.slicer.org/
33.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
, and
Bauer
,
C.
, et al.,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Reson. Imaging
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
34.
Devries
,
N. A.
,
Shivanna
,
K. H.
,
Tadepalli
,
S. C.
,
Magnotta
,
V. A.
, and
Grosland
,
N. M.
,
2009
, “
IA-FEMesh: Anatomic FE Models—A Check of Mesh Accuracy and Validity
,”
Iowa Orthop. J.
,
29
, pp.
48
54
.https://pmc.ncbi.nlm.nih.gov/articles/PMC2723692/
35.
LS-DYNA Support
, 2024, “
Hourglass
,” LS-DYNA Support, Stuttgart, Germany, accessed Apr. 21, 2024, https://www.dynasupport.com/howtos/element/hourglass
36.
Currey
,
J. D.
,
2001
, “
Bone and Natural Composites: Properties
,”
Encyclopedia of Materials: Science and Technology
,
Elsevier
, York, UK, pp.
776
781
.
37.
Wirtz
,
D. C.
,
Schiffers
,
N.
,
Pandorf
,
T.
,
Radermacher
,
K.
,
Weichert
,
D.
, and
Forst
,
R.
,
2000
, “
Critical Evaluation of Known Bone Material Properties to Realize Anisotropic FE-Simulation of the Proximal Femur
,”
J. Biomech.
,
33
(
10
), pp.
1325
1330
.10.1016/S0021-9290(00)00069-5
38.
Piszczatowski
,
S.
,
2012
, “
Geometrical Aspects of Growth Plate Modelling Using Carter's and Stokes's Approaches
,”
Acta Bioeng. Biomech.
,
14
(
1
), pp.
93
106
.https://pubmed.ncbi.nlm.nih.gov/22741593/
39.
Kobayashi
,
M.
,
Garcia-Elias
,
M.
,
Nagy
,
L.
,
Ritt
,
M. J. P. F.
,
An
,
K.-N.
,
Cooney
,
W. P.
, and
Linscheid
,
R. L.
,
1997
, “
Axial Loading Induces Rotation of the Proximal Carpal Row Bones Around Unique Screw-Displacement Axes
,”
J. Biomech.
,
30
(
11–12
), pp.
1165
1167
.10.1016/S0021-9290(97)00080-8
40.
Argosy Publishing, 2024, “
Visible Body Suite, 4.06
,” Argosy Publishing, Boston, MA, accessed Mar. 10, 2024, www.visiblebody.com
41.
Motsinger
,
S. K.
,
2020
, “
Complete Anatomy
,”
J. Med. Libr. Assoc.
,
108
(
1
), pp.
155
157
.10.5195/jmla.2020.853
42.
Catfish Animation Studio S.r.l.
,
2024
, “
Anatomy 3D Atlas, 4.1.0
,” Catfish Animation Studio S.r.l., Milano, Italy.
43.
LS-Dyna Support
, 2024, “
Contact Types
,” LS-Dyna Support, Stuttgart, Germany, accessed Feb. 15, 2024, https://www.dynasupport.com/tutorial/contact-modeling-in-ls-dyna/contact-types
44.
MatWeb Material Property Data
, 2024, “
304 Stainless Steel
,”
MatWeb Material Property Data
, Blacksburg, VA, accessed July 14, 2024, https://www.matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f8b490387e3c922237098da&ckck=1
45.
Gislason
,
M. K.
,
Nash
,
D. H.
,
Nicol
,
A.
,
Kanellopoulos
,
A.
,
Bransby-Zachary
,
M.
,
Hems
,
T.
,
Condon
,
B.
, and
Stansfield
,
B.
,
2009
, “
A Three-Dimensional Finite Element Model of Maximal Grip Loading in the Human Wrist
,”
Proc. Inst. Mech. Eng. H
,
223
(
7
), pp.
849
861
.10.1243/09544119JEIM527
46.
Bajuri
,
M.
,
Abdul Kadir
,
M. R.
,
Amin
,
I. M.
, and
Öchsner
,
A.
,
2012
, “
Biomechanical Analysis of Rheumatoid Arthritis of the Wrist Joint
,”
Proc. Inst. Mech. Eng. H
,
226
(
7
), pp.
510
520
.10.1177/0954411912445846
47.
LS-DYNA Support
, 2024, “
Quasistatic Simulation
,” LS-DYNA Support, Stuttgart, Germany, accessed May 1, 2024, https://www.dynasupport.com/howtos/general/quasistatic-simulation
48.
Carrigan
,
S. D.
,
Whiteside
,
R. A.
,
Pichora
,
D. R.
, and
Small
,
C. F.
,
2003
, “
Development of a Three-Dimensional Finite Element Model for Carpal Load Transmission in a Static Neutral Posture
,”
Ann. Biomed. Eng.
,
31
(
6
), pp.
718
725
.10.1114/1.1574027
49.
Gislason
,
M. K.
,
Stansfield
,
B.
, and
Nash
,
D. H.
,
2009
, “
Loading on the Scapho-Trapezium-Trapezoid Joint During Gripping
,”
22nd Congress of the International Society of Biomechanics
,
Cape Town
, South Africa, July 5–9.https://strathprints.strath.ac.uk/20174/
50.
Alonso-Rasgado
,
T.
,
Zhang
,
Q.
,
Cruz
,
D. J.
,
Bailey
,
C.
,
Pinder
,
E.
,
Mandaleson
,
A.
, and
Talwalkar
,
S.
,
2017
, “
Analysis of Tenodesis Techniques for Treatment of Scapholunate Instability Using the Finite Element Method
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
12
), p. e2897.10.1002/cnm.2897
51.
Marqués
,
R.
,
Melchor
,
J.
,
Sánchez-Montesinos
,
I.
,
Roda
,
O.
,
Rus
,
G.
, and
Hernández-Cortés
,
P.
,
2022
, “
Biomechanical Finite Element Method Model of the Proximal Carpal Row and Experimental Validation
,”
Front. Physiol.
,
12
, p.
749372
.10.3389/fphys.2021.749372
52.
Matsuura
,
Y.
,
Kuniyoshi
,
K.
,
Suzuki
,
T.
,
Ogawa
,
Y.
,
Sukegawa
,
K.
,
Rokkaku
,
T.
, and
Takahashi
,
K.
,
2014
, “
Accuracy of Specimen-Specific Nonlinear Finite Element Analysis for Evaluation of Distal Radius Strength in Cadaver Material
,”
J. Orthop. Sci.
,
19
(
6
), pp.
1012
1018
.10.1007/s00776-014-0616-1
53.
Harley
,
B. J.
,
Pereria
,
M. L.
,
Werner
,
F. W.
,
Kinney
,
D. A.
, and
Sutton
,
L. G.
,
2015
, “
Force Variations in the Distal Radius and Ulna: Effect of Ulnar Variance and Forearm Motion
,”
J. Hand Surg. Am.
,
40
(
2
), pp.
211
216
.10.1016/j.jhsa.2014.10.001
54.
Guo
,
X.
,
Fan
,
Y.
, and
Li
,
Z.-M.
,
2009
, “
Effects of Dividing the Transverse Carpal Ligament on the Mechanical Behavior of the Carpal Bones Under Axial Compressive Load: A Finite Element Study
,”
Med. Eng. Phys.
,
31
(
2
), pp.
188
194
.10.1016/j.medengphy.2008.08.001
55.
Viegas
,
S. F.
,
Patterson
,
R. M.
,
Todd
,
P. D.
, and
McCarty
,
P.
,
1993
, “
Load Mechanics of the Midcarpal Joint
,”
J. Hand Surg. Am.
,
18
(
1
), pp.
14
18
.10.1016/0363-5023(93)90238-X
56.
Mayfield
,
J. K.
,
Johnson
,
R. P.
, and
Kilcoyne
,
R. F.
,
1976
, “
The Ligaments of the Human Wrist and Their Functional Significance
,”
Anat. Rec.
,
186
(
3
), pp.
417
428
.10.1002/ar.1091860307
57.
Ayhan
,
Ç.
, and
Ayhan
,
E.
,
2020
, “
Kinesiology of the Wrist and the Hand
,”
Comparative Kinesiology of the Human Body
,
Elsevier
, Ankara, Turkey, pp.
211
282
.
58.
Werner
,
F. W.
,
Palmer
,
A. K.
,
Fortino
,
M. D.
, and
Short
,
W. H.
,
1992
, “
Force Transmission Through the Distal Ulna: Effect of Ulnar Variance, Lunate Fossa Angulation, and Radial and Palmar Tilt of the Distal Radius
,”
J. Hand Surg. Am.
,
17
(
3
), pp.
423
428
.10.1016/0363-5023(92)90342-M
59.
An
,
K.-N.
,
Berger
,
R. A.
, and
Cooney
,
W. P.
, Eds.,
1991
,
Biomechanics of the Wrist Joint
,
Springer New York
,
New York
.
60.
Shah
,
D. S.
,
Middleton
,
C.
,
Gurdezi
,
S.
,
Horwitz
,
M. D.
, and
Kedgley
,
A. E.
,
2017
, “
The Effects of Wrist Motion and Hand Orientation on Muscle Forces: A Physiologic Wrist Simulator Study
,”
J. Biomech.
,
60
, pp.
232
237
.10.1016/j.jbiomech.2017.06.017
61.
Eschweiler
,
J.
,
Li
,
J.
,
Quack
,
V.
,
Rath
,
B.
,
Baroncini
,
A.
,
Hildebrand
,
F.
, and
Migliorini
,
F.
,
2022
, “
Anatomy, Biomechanics, and Loads of the Wrist Joint
,”
Life
,
12
(
2
), p.
188
.10.3390/life12020188
62.
Viegas
,
S. F.
,
Tencer
,
A. F.
,
Cantrell
,
J.
,
Chang
,
M.
,
Clegg
,
P.
,
Hicks
,
C.
,
O'Meara
,
C.
, and
Williamson
,
J. B.
,
1987
, “
Load Transfer Characteristics of the Wrist. Part I. The Normal Joint
,”
J. Hand Surg. Am.
,
12
(
6
), pp.
971
978
.10.1016/S0363-5023(87)80093-X
63.
Johnson
,
J. E.
,
Lee
,
P.
,
McIff
,
T. E.
,
Bruce Toby
,
E.
, and
Fischer
,
K. J.
,
2014
, “
Computationally Efficient Magnetic Resonance Imaging Based Surface Contact Modeling as a Tool to Evaluate Joint Injuries and Outcomes of Surgical Interventions Compared to Finite Element Modeling
,”
ASME J. Biomech. Eng.
,
136
(
4
), p.
041002
.10.1115/1.4026485
64.
Modaresi
,
S.
,
Kallem
,
M. S.
,
Lee
,
P.
,
McIff
,
T. E.
,
Toby
,
E. B.
, and
Fischer
,
K. J.
,
2017
, “
Evaluation of Midcarpal Capitate Contact Mechanics in Normal, Injured and Post-Operative Wrists
,”
Clin. Biomech.
,
47
, pp.
96
102
.10.1016/j.clinbiomech.2017.06.008
65.
Rainbow
,
M. J.
,
Wolff
,
A. L.
,
Crisco
,
J. J.
, and
Wolfe
,
S. W.
,
2016
, “
Functional Kinematics of the Wrist
,”
J. Hand Surg. (Eur. Vol.)
,
41
(
1
), pp.
7
21
.10.1177/1753193415616939
66.
Rainbow
,
M. J.
,
Crisco
,
J. J.
,
Moore
,
D. C.
,
Kamal
,
R. N.
,
Laidlaw
,
D. H.
,
Akelman
,
E.
, and
Wolfe
,
S. W.
,
2012
, “
Elongation of the Dorsal Carpal Ligaments: A Computational Study of in Vivo Carpal Kinematics
,”
J. Hand Surg. Am.
,
37
(
7
), pp.
1393
1399
.10.1016/j.jhsa.2012.04.025
67.
Ansys® Meshing 2020R2
, 2020, “Help System,
Meshing User's Guide, Global Mesh Controls - Quality Group
,” Ansys® Meshing 2020R2, Canonsburg, PA.
You do not currently have access to this content.