Abstract

Design and analysis are presented for a new device to test the response of endothelial cells to the simultaneous action of cyclic shear stresses and pressure fluctuations. The design consists of four pulsatile-flow chambers connected in series, where shear stress is identical in all four chambers and pressure amplitude decreases in successive chambers. Each flow chamber is bounded above and below by two parallel plates separated by a small gap. The design of the chamber planform must ensure that cells within the testing region experience spatially uniform time-periodic shear stress. For conditions typically encountered in applications, the viscous unsteady flow exhibits order-unity values of the associated Womersley number. The corresponding solution to the unsteady lubrication problem, with general nonsinusoidal flowrate, is formulated in terms of a stream function satisfying Laplace's equation, which can be integrated numerically to determine the spatial distribution of shear stresses for chambers of general planform. The results are used to optimize the design of a device with a hexagonal planform. Accompanying experiments using particle tracking velocimetry (PTV) in a fabricated chamber were conducted to validate theoretical predictions. Pressure readings indicate that intrachamber pressure variations associated with viscous pressure losses and acoustic fluctuations are relatively small, so that all cells in a given testing region experience nearly equal pressure forces.

References

1.
Massaaki
,
S.
, and
Toshiro
,
O.
,
2005
, “
Biorheological Views of Endothelial Cell Responses to Mechanical Stimuli
,”
Biorheology
,
42
(
6
), pp.
421
441
.https://api.semanticscholar.org/CorpusID:25451468
2.
Jufri
,
N.
,
Mohamedali
,
A.
,
Avolio
,
A.
, and
Baker
,
M.
,
2015
, “
Mechanical Stretch: Physiological and Pathological Implications for Human Vascular Endothelial Cells
,”
Vasc. Cell
,
7
(
1
), p.
8
.10.1186/s13221-015-0033-z
3.
Lim
,
X. R.
, and
Harraz
,
O. F.
,
2024
, “
Mechanosensing-by-Vascular-Endothelium
,”
Annu. Rev. Physiol.
,
86
(
1
), pp.
71
97
.10.1146/annurev-physiol-042022-030946
4.
Johnson Kameny
,
R.
,
Datar
,
S.
,
Boehme
,
J.
,
Morris
,
C.
,
Zhu
,
T.
,
Goudy
,
B.
,
Johnson
,
E.
, et al.,
2019
, “
Ovine Models of Congenital Heart Disease and the Consequences of Hemodynamic Alterations for Pulmonary Artery Remodeling
,”
Am. J. Respir. Cell Mol. Biol.
,
60
(
5
), pp.
503
514
.10.1165/rcmb.2018-0305MA
5.
Fallon
,
M.
,
Mathews
,
R.
, and
Hinds
,
M.
,
2022
, “
In Vitro Flow Chamber Design for the Study of Endothelial Cell (Patho)Physiology
,”
ASME J. Biomech. Eng.
,
144
(
2
), p.
020801
.10.1115/1.4051765
6.
Meng
,
F.
,
Cheng
,
H.
,
Qian
,
J.
,
Dai
,
X.
,
Huang
,
Y.
, and
Fan
,
Y.
,
2022
, “
In Vitro Fluidic Systems: Applying Shear Stress on Endothelial Cells
,”
Med. Nov. Technol. Devices
,
15
, p.
100143
.10.1016/j.medntd.2022.100143
7.
Batchelor
,
G.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, New York.
8.
Félétou
,
M.
,
2011
,
The Endothelium: Part 1: Multiple Functions of the Endothelial Cells—Focus on Endothelium-Derived Vasoactive Mediators
,
Morgan & Claypool Life Sciences Publishers
, San Rafael, CA.
9.
Krüger-Genge
,
A.
,
Blocki
,
A.
,
Franke
,
R. P.
, and
Jung
,
F.
,
2019
, “
Vascular Endothelial Cell Biology: An Update
,”
Int. J. Mol. Sci.
,
20
(
18
), p.
4411
.10.3390/ijms20184411
10.
Voyvodic
,
P.
,
Min
,
D.
, and
Baker
,
A.
,
2012
, “
A Multichannel Dampened Flow System for Studies on Shear Stress-Mediated Mechanotransduction
,”
Lab Chip
,
12
(
18
), pp.
3322
3330
.10.1039/c2lc40526a
11.
Loudon
,
C.
, and
Tordesillas
,
A.
,
1998
, “
The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow
,”
J. Theor. Biol.
,
191
(
1
), pp.
63
78
.10.1006/jtbi.1997.0564
12.
Yakhot
,
A.
,
Arad
,
M.
, and
Ben-Dor
,
G.
,
1999
, “
Numerical Investigation of a Laminar Pulsating Flow in a Rectangular Duct
,”
Int. J. Numer. Methods Fluids
,
29
(
8
), pp.
935
950
.10.1002/(SICI)1097-0363(19990430)29:8<935::AID-FLD823>3.0.CO;2-C
13.
Bacabac
,
R.
,
Smit
,
T.
,
Cowin
,
S.
,
Van Loon
,
J.
,
Nieuwstadt
,
F.
,
Heethaar
,
R.
, and
Klein-Nulend
,
J.
,
2005
, “
Dynamic Shear Stress in Parallel-Plate Flow Chambers
,”
J. Biomech.
,
38
(
1
), pp.
159
167
.10.1016/j.jbiomech.2004.03.020
14.
Avari
,
H.
,
Rogers
,
K.
, and
Savory
,
E.
,
2018
, “
Wall Shear Stress Determination in a Small-Scale Parallel Plate Flow Chamber Using Laser Doppler Velocimetry Under Laminar, Pulsatile and Low-Reynolds Number Turbulent Flows
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061404
.10.1115/1.4039158
15.
Blythman
,
R.
,
Persoons
,
T.
,
Jeffers
,
N.
,
Nolan
,
K.
, and
Murray
,
D.
,
2017
, “
Localised Dynamics of Laminar Pulsatile Flow in a Rectangular Channel
,”
Int. J. Heat Fluid Flow
,
66
, pp.
8
17
.10.1016/j.ijheatfluidflow.2017.05.006
16.
Frangos
,
J.
,
McIntire
,
L.
, and
Eskin
,
S.
,
1988
, “
Shear Stress Induced Stimulation of Mammalian Cell Metabolism
,”
Biotechnol. Bioeng.
,
32
(
8
), pp.
1053
1060
.10.1002/bit.260320812
17.
van Kooten
,
T.
,
Schakenraad
,
J.
,
Van Der Mei
,
H.
, and
Busscher
,
H.
,
1992
, “
Development and Use of a Parallel-Plate Flow Chamber for Studying Cellular Adhesion to Solid Surfaces
,”
J. Biomed. Mater. Res. A
,
26
(
6
), pp.
725
738
.10.1002/jbm.820260604
18.
Ruel
,
J.
,
Lemay
,
J.
,
Dumas
,
G.
,
Doillon
,
C.
, and
Charara
,
J.
,
1995
, “
Development of a Parallel Plate Flow Chamber for Studying Cell Behaviour Under Pulsatile Flow
,”
Asaio J.
,
41
(
4
), pp.
876
883
.10.1097/00002480-199541040-00011
19.
Nauman
,
E.
,
Risic
,
K.
,
Keaveny
,
T.
, and
Satcher
,
R.
,
1999
, “
Quantitative Assessment of Steady and Pulsatile Flow Fields in a Parallel Plate Flow Chamber
,”
Ann. Biomed. Eng.
,
27
(
2
), pp.
194
199
.10.1114/1.173
20.
Chung
,
B.
,
Robertson
,
A.
, and
Peters
,
D.
,
2003
, “
The Numerical Design of a Parallel Plate Flow Chamber for Investigation of Endothelial Cell Response to Shear Stress
,”
Comput. Struct.
,
81
(
8–11
), pp.
535
546
.10.1016/S0045-7949(02)00416-9
21.
Lane
,
W.
,
Jantzen
,
A.
,
Carlon
,
T.
,
Jamiolkowski
,
R.
,
Grenet
,
J.
,
Ley
,
M.
,
Haseltine
,
J.
, et al.,
2012
, “
Parallel-Plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells Under Laminar Flow Shear Stress
,”
J. Vis. Exp.
, (
59
), p.
3349
.10.3791/3349
22.
Qin
,
K.
,
Hu
,
X.
, and
Liu
,
Z.
,
2007
, “
Analysis of Pulsatile Flow in the Parallel-Plate Flow Chamber With Spatial Shear Stress Gradient
,”
J. Hydrodyn.
,
19
(
1
), pp.
113
120
.10.1016/S1001-6058(07)60036-5
23.
Cheng
,
C.
,
Herfkens
,
R.
,
Taylor
,
C.
, and
Feinstein
,
A. J.
,
2005
, “
Proximal Pulmonary Artery Blood Flow Characteristics in Healthy Subject Measured in an Upright Posture Using MRI: The Effects of Exercise and Age
,”
J. Magn. Reson. Imaging
,
21
(
6
), pp.
752
758
.10.1002/jmri.20333
24.
Walton
,
T.
, and
Ireland
,
K.
,
2020
, “
Principles of Pressure Transducer Function and Sources of Error in Clinical Use
,”
Anaesth. Intensive Care Med.
,
21
(
12
), pp.
668
672
.10.1016/j.mpaic.2020.10.008
25.
Back
,
M.
, and
Carroll
,
C.
,
2023
, “
Principles of Pressure Transducers, Resonance, Damping and Frequency Response
,”
Anaesth. Intensive Care Med.
,
24
(
11
), pp.
720
724
.10.1016/j.mpaic.2023.08.003
You do not currently have access to this content.