Abstract

A previously developed model of a lymphatic vessel as a chain of lymphangions was investigated to determine whether lymphangions of unequal length reduce pumping relative to a similar chain of equal-length ones. The model incorporates passive elastic and active contractile properties taken from ex vivo measurements, and intravascular lymphatic valves as transvalvular pressure-dependent resistances to flow with hysteresis and transmural pressure-dependent bias to the open state as observed experimentally. Coordination of lymphangion contractions is managed by marrying an autonomous transmural pressure-dependent pacemaker for each lymphangion with bidirectional transmission of activation signals between lymphangions, qualitatively matching empirical observations. With eight lymphangions as used here and many nonlinear constraints, the model is capable of complex outcomes. The expected flow-rate advantage conferred by longer lymphangions everywhere was confirmed. However, the anticipated advantage of uniform lymphangions over those of unequal length, compared in chains of equal overall length, was not found. A wide variety of dynamical outcomes was observed, with the most powerful determinant being the adverse pressure difference, rather than the arrangement of long and short lymphangions. This work suggests that the wide variation in lymphangion length which is commonly observed in collecting lymphatic vessels does not confer disadvantage in pumping lymph.

References

1.
Moore
,
J. E.
, Jr.
, and
Bertram
,
C. D.
,
2018
, “
Lymphatic System Flows
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
459
482
.10.1146/annurev-fluid-122316-045259
2.
Dixon
,
J. B.
,
2010
, “
Review – Lymphatic Lipid Transport: Sewer or Subway?
,”
Trends Endocrinol. Metab.
,
21
(
8
), pp.
457
518
.10.1016/j.tem.2010.04.003
3.
Martel
,
C.
,
Li
,
W.
,
Fulp
,
B.
,
Platt
,
A. M.
,
Gautier
,
E. L.
,
Westerterp
,
M.
,
Bittman
,
R.
, et al.,
2013
, “
Lymphatic Vasculature Mediates Macrophage Reverse Cholesterol Transport in Mice
,”
J. Clin. Invest.
,
123
(
4
), pp.
1571
1579
.10.1172/JCI63685
4.
Levick
,
J. R.
,
2010
, “
Circulation of Fluid Between Plasma, Interstitium and Lymph
,”
An Introduction to Cardiovascular Physiology
, 5th ed.,
Hodder Arnold
,
London
, UK, pp.
188
219
.
5.
Granger
,
H. J.
,
Laine
,
G. A.
,
Barnes
,
G. E.
, and
Lewis
,
R. E.
,
1984
, “
Dynamics and Control of Transmicrovascular Fluid Exchange
,” Edema,
N. C.
Staub
and
A. E.
Taylor
, eds.,
Raven Press
,
New York
, pp.
189
228
.
6.
Breslin
,
J. W.
,
Yang
,
Y.
,
Scallan
,
J. P.
,
Sweat
,
R. S.
,
Adderley
,
S. P.
, and
Murfee
,
W. L.
,
2019
, “
Lymphatic Vessel Network Structure and Physiology
,”
Compr. Physiol.
,
9
(
1
), pp.
207
299
.10.1002/cphy.c180015
7.
Aukland
,
K.
, and
Reed
,
R. K.
,
1993
, “
Interstitial-Lymphatic Mechanisms in the Control of Extracellular Fluid Volume
,”
Physiol. Rev.
,
73
(
1
), pp.
1
78
.10.1152/physrev.1993.73.1.1
8.
Engeset
,
A.
,
Olszewski
,
W.
,
Jæger
,
P. M.
,
Sokolowski
,
J.
, and
Theodorsen
,
L.
,
1977
, “
Twenty-Four Hour Variation in Flow and Composition of Leg Lymph in Normal Men
,”
Acta Physiol. Scand.
,
99
(
2
), pp.
140
148
.10.1111/j.1748-1716.1977.tb10364.x
9.
Olszewski
,
W. L.
, and
Engeset
,
A.
,
1980
, “
Intrinsic Contractility of Prenodal Lymph Vessels and Lymph Flow in Human Leg
,”
Am. J. Physiol. Heart Circ. Physiol.
,
239
(
6
), pp.
H775
H783
.10.1152/ajpheart.1980.239.6.H775
10.
Gashev
,
A. A.
, and
Zawieja
,
D. C.
,
2010
, “
Hydrodynamic Regulation of Lymphatic Transport and the Impact of Aging
,”
Pathophysiology
,
17
(
4
), pp.
277
287
.10.1016/j.pathophys.2009.09.002
11.
Gashev
,
A. A.
, and
Zawieja
,
D. C.
,
2020
, “
Hydrodynamic Regulation of Lymphatic Vessel Transport Function and the Impact of Aging
,”
Lymphatic Structure and Function in Health and Disease
,
F. N. E.
Gavins
and
J. S.
Alexander
, eds.,
Elsevier Inc
.,
London
, UK, pp.
55
92
.
12.
Davis
,
M. J.
,
Scallan
,
J. P.
,
Wolpers
,
J. H.
,
Muthuchamy
,
M.
,
Gashev
,
A. A.
, and
Zawieja
,
D. C.
,
2012
, “
Intrinsic Increase in Lymphangion Muscle Contractility in Response to Elevated Afterload
,”
Am. J. Physiol. Heart Circ. Physiol.
,
303
(
7
), pp.
H795
H808
.10.1152/ajpheart.01097.2011
13.
Mislin
,
H.
,
1961
, “
Zur Funktionsanalyse Der Lymphgefassmotorik (Cavia Porcellus L.) (Mit 5. Textabbildungen)
,”
Rev. Suisse Zool.
,
68
(
2
), pp.
228
238
.
14.
Pan
,
W.-R.
,
Le Roux
,
C. M.
,
Levy
,
S. M.
, and
Briggs
,
C. A.
,
2010
, “
The Morphology of the Human Lymphatic Vessels in the Head and Neck
,”
Clin. Anat.
,
23
(
6
), pp.
654
661
.10.1002/ca.21004
15.
Browse
,
N. L.
,
Doig
,
R. L.
, and
Sizeland
,
D.
,
1984
, “
The Resistance of a Lymph Node to Lymph Flow
,”
Br. J. Surg.
,
71
(
3
), pp.
192
196
.10.1002/bjs.1800710308
16.
McHale
,
N. G.
, and
Meharg
,
M. K.
,
1992
, “
Co-ordination of Pumping in Isolated Bovine Lymphatic Vessels
,”
J. Physiol.
,
450
(
1
), pp.
503
512
.10.1113/jphysiol.1992.sp019139
17.
Zawieja
,
D. C.
,
Davis
,
K. L.
,
Schuster
,
R.
,
Hinds
,
W. M.
, and
Granger
,
H. J.
,
1993
, “
Distribution, Propagation, and Coordination of Contractile Activity in Lymphatics
,”
Am. J. Physiol. Heart Circ. Physiol.
,
264
(
4
), pp.
H1283
H1291
.10.1152/ajpheart.1993.264.4.H1283
18.
Crowe
,
M. J.
,
von der Weid
,
P.-Y.
,
Brock
,
J. A.
, and
Van Helden
,
D. F.
,
1997
, “
Co-ordination of Contractile Activity in Guinea-Pig Mesenteric Lymphatics
,”
J. Physiol.
,
500
(
1
), pp.
235
244
.10.1113/jphysiol.1997.sp022013
19.
Bohlen
,
H. G.
,
Gasheva
,
O. Y.
, and
Zawieja
,
D. C.
,
2011
, “
Nitric Oxide Formation by Lymphatic Bulb and Valves is a Major Regulatory Component of Lymphatic Pumping
,”
Am. J. Physiol. Heart Circ. Physiol.
,
301
(
5
), pp.
H1897
H1906
.10.1152/ajpheart.00260.2011
20.
Kunert
,
C.
,
Baish
,
J. W.
,
Liao
,
S.
,
Padera
,
T. P.
, and
Munn
,
L. L.
,
2015
, “
Mechanobiological Oscillators Control Lymph Flow
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
35
), pp.
10938
10943
.10.1073/pnas.1508330112
21.
Bertram
,
C. D.
,
Macaskill
,
C.
,
Davis
,
M. J.
, and
Moore Jr
,
J. E.
,
2016
, “
Consequences of Intravascular Lymphatic Valve Properties: A Study of Contraction Timing in a Multi-Lymphangion Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
310
(
7
), pp.
H847
H860
.10.1152/ajpheart.00669.2015
22.
Elich
,
H.
,
Barrett
,
A.
,
Shankar
,
V.
, and
Fogelson
,
A. L.
,
2021
, “
Pump Efficacy in a Two-Dimensional, Fluid-Structure Interaction Model of a Chain of Contracting Lymphangions
,”
Biomech. Model. Mechanobiol.
,
20
(
5
), pp.
1941
1968
.10.1007/s10237-021-01486-w
23.
Castorena-Gonzalez
,
J. A.
,
Zawieja
,
S. D.
,
Li
,
M.
,
Srinivasan
,
R. S.
,
Simon
,
A. M.
,
de Wit
,
C.
,
de la Torre
,
R.
,
Martinez-Lemus
,
L. A.
,
Hennig
,
G. W.
, and
Davis
,
M. J.
,
2018
, “
Mechanisms of Connexin-Related Lymphedema: A Critical Role for Cx45, but Not Cx43 or Cx47, in the Entrainment of Spontaneous Lymphatic Contractions
,”
Circ. Res.
,
123
(
8
), pp.
964
985
.10.1161/CIRCRESAHA.117.312576
24.
Jamalian
,
S.
,
Bertram
,
C. D.
,
Richardson
,
W. J.
, and
Moore
,
J. E.
, Jr.
,
2013
, “
Parameter Sensitivity Analysis of a Lumped-Parameter Model of a Chain of Lymphangions in Series
,”
Am. J. Physiol. Heart Circ. Physiol.
,
305
(
12
), pp.
H1709
H1717
.10.1152/ajpheart.00403.2013
25.
Winn
,
A.
, and
Katifori
,
E.
,
2021
, “
Operating Principles of Peristaltic Pumping Through a Dense Array of Valves
,”
arXiv:2111.11413v1
.https://www.researchgate.net/publication/356456148_Operating_Principles_of_Peristaltic_Pumping_through_a_Dense_Array_of_Valves
26.
Wolf
,
K. T.
,
Poorghani
,
A.
,
Dixon
,
J. B.
, and
Alexeev
,
A.
,
2023
, “
Effect of Valve Spacing on Peristaltic Pumping
,”
Bioinspir. Biomim.
,
18
(
3
), p.
035002
.10.1088/1748-3190/acbe85
27.
Bertram
,
C. D.
,
Macaskill
,
C.
,
Davis
,
M. J.
, and
Moore
,
J. E.
, Jr.
,
2018
, “
Contraction of Collecting Lymphatics: Organization of Pressure-Dependent Rate for Multiple Lymphangions
,”
Biomech. Model. Mechanobiol.
,
17
(
5
), pp.
1513
1532
.10.1007/s10237-018-1042-7
28.
Bertram
,
C. D.
,
Macaskill
,
C.
,
Davis
,
M. J.
, and
Moore
,
J. E.
, Jr.
,
2014b
, “
Development of a Model of a Multi-Lymphangion Lymphatic Vessel Incorporating Realistic and Measured Parameter Values
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
401
416
.10.1007/s10237-013-0505-0
29.
Bertram
,
C. D.
,
Macaskill
,
C.
,
Davis
,
M. J.
, and
Moore Jr
,
J. E.
,
2017
, “
Valve-Related Modes of Pump Failure in Collecting Lymphatics: Numerical and Experimental Investigation
,”
Biomech. Model. Mechanobiol.
,
16
(
6
), pp.
1987
2003
.10.1007/s10237-017-0933-3
30.
Bertram
,
C. D.
,
Macaskill
,
C.
, and
Moore
,
J. E.
, Jr.
, “
Towards a Realistic Model of a Lymphatic Network: Improved Methods of Solution of the Equations for Many Lymphangions in Series
,”
ASME
Paper No. SBC2013-14434.10.1115/SBC2013-14434
31.
Davis
,
M. J.
,
Rahbar
,
E.
,
Gashev
,
A. A.
,
Zawieja
,
D. C.
, and
Moore
,
J. E.
, Jr.
,
2011
, “
Determinants of Valve Gating in Collecting Lymphatic Vessels From Rat Mesentery
,”
Am. J. Physiol. Heart Circ. Physiol.
,
301
(
1
), pp.
H48
H60
.10.1152/ajpheart.00133.2011
32.
Talkington
,
A. M.
,
Davis
,
R. B.
,
Datto
,
N. C.
,
Goodwin
,
E. R.
,
Miller
,
L. A.
, and
Caron
,
K. M.
,
2022
, “
Dermal Lymphatic Capillaries Do Not Obey Murray's Law
,”
Front. Cardiovasc. Med.
,
9
, p.
840305
.10.3389/fcvm.2022.840305
You do not currently have access to this content.