Abstract

Articular cartilage (AC) is a load-bearing tissue that covers long bones in synovial joints. The biphasic/poroelastic mechanical properties of AC help it to protect joints by distributing loads, absorbing impact forces, and reducing friction. Unfortunately, alterations in these mechanical properties adversely impact cartilage function and precede joint degeneration in the form of osteoarthritis (OA). Thus, understanding what factors regulate the poroelastic mechanical properties of cartilage is of great scientific and clinical interest. Transgenic mouse models provide a valuable platform to delineate how specific genes contribute to cartilage mechanical properties. However, the poroelastic mechanical properties of murine articular cartilage are challenging to measure due to its small size (thickness ∼ 50 microns). In the current study, our objective was to test whether the poroelastic mechanical properties of murine articular cartilage can be determined based solely on time-dependent cell death measurements under constant loading conditions. We hypothesized that in murine articular cartilage subjected to constant, sub-impact loading from an incongruent surface, cell death area and tissue strain are closely correlated. We further hypothesized that the relationship between cell death area and tissue strain can be used—in combination with inverse finite element modeling—to compute poroelastic mechanical properties. To test these hypotheses, murine cartilage-on-bone explants from different anatomical locations were subjected to constant loading conditions by an incongruent surface in a custom device. Cell death area increased over time and scaled linearly with strain, which rose in magnitude over time due to poroelastic creep. Thus, we were able to infer tissue strain from cell death area measurements. Moreover, using tissue strain values inferred from cell death area measurements, we applied an inverse finite element modeling procedure to compute poroelastic material properties and acquired data consistent with previous studies. Collectively, our findings demonstrate in the key role poroelastic creep plays in mediating cell survival in mechanically loaded cartilage and verify that cell death area can be used as a surrogate measure of tissue strain that enables determination of murine cartilage mechanical properties.

References

1.
Sophia Fox
,
A. J.
,
Bedi
,
A.
, and
Rodeo
,
S. A.
,
2009
, “
The Basic Science of Articular Cartilage: Structure, Composition, and Function
,”
Sports Health
,
1
(
6
), pp.
461
468
.10.1177/1941738109350438
2.
Buckwalter
,
J. A.
, and
Mankin
,
H. J.
,
1998
, “
Articular Cartilage: Tissue Design and Chondrocyte-Matrix Interactions
,”
Instr. Course Lect.
,
47
, pp.
477
486
.
3.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
4.
Basalo
,
I. M.
,
Mauck
,
R. L.
,
Kelly
,
T. A.
,
Nicoll
,
S. B.
,
Chen
,
F. H.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression Following Enzymatic Digestion
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
779
786
.10.1115/1.1824123
5.
Thambyah
,
A.
,
Heeswijk
,
V. V.
,
Donkelaar
,
C. C. V.
, and
Broom
,
N. D.
,
2015
, “
A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation Versus Creep Loading
,”
Adv. Mater. Sci. Eng.
,
2015
, pp.
1
11
.10.1155/2015/952879
6.
Malekipour
,
F.
,
Whitton
,
C.
,
Oetomo
,
D.
, and
Lee
,
P. V.
,
2013
, “
Shock Absorbing Ability of Articular Cartilage and Subchondral Bone Under Impact Compression
,”
J. Mech. Behav. Biomed. Mater.
,
26
, pp.
127
135
.10.1016/j.jmbbm.2013.05.005
7.
Malekipour
,
F.
,
Lee
., and
P. V. S.
,
Shaktivesh
,
2019
, “
Shock Absorbing Ability in Healthy and Damaged Cartilage-Bone Under High-Rate Compression
,”
J. Mech. Behav. Biomed. Mater.
,
90
, pp.
388
394
.
8.
Gleghorn
,
J. P.
, and
Bonassar
,
L. J.
,
2008
, “
Lubrication Mode Analysis of Articular Cartilage Using Stribeck Surfaces
,”
J. Biomech.
,
41
(
9
), pp.
1910
1918
.10.1016/j.jbiomech.2008.03.043
9.
Burris
,
D. L.
,
Ramsey
,
L.
,
Graham
,
B. T.
,
Price
,
C.
, and
Moore
,
A. C.
,
2019
, “
How Sliding and Hydrodynamics Contribute to Articular Cartilage Fluid and Lubrication Recovery
,”
Tribol. Lett.
,
67
(
2
), p.
46
.10.1007/s11249-019-1158-7
10.
Ateshian
,
G. A.
,
2009
, “
The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication
,”
J. Biomech.
,
42
(
9
), pp.
1163
1176
.10.1016/j.jbiomech.2009.04.040
11.
McCutchen
,
C. W.
,
1962
, “
The Frictional Properties of Animal Joints
,”
Wear
,
5
(
1
), pp.
1
17
.10.1016/0043-1648(62)90176-X
12.
Chery
,
D. R.
,
Han
,
B.
,
Li
,
Q.
,
Zhou
,
Y.
,
Heo
,
S. J.
,
Kwok
,
B.
,
Chandrasekaran
,
P.
,
Wang
,
C.
,
Qin
,
L.
,
Lu
,
X. L.
, et al.,
2020
, “
Early Changes in Cartilage Pericellular Matrix Micromechanobiology Portend the Onset of Post-Traumatic Osteoarthritis
,”
Acta Biomater.
,
111
, pp.
267
278
.10.1016/j.actbio.2020.05.005
13.
Doyran
,
B.
,
Tong
,
W.
,
Li
,
Q.
,
Jia
,
H.
,
Zhang
,
X.
,
Chen
,
C.
,
Enomoto-Iwamoto
,
M.
,
Lu
,
X. L.
,
Qin
,
L.
, and
Han
,
L.
,
2017
, “
Nanoindentation Modulus of Murine Cartilage: A Sensitive Indicator of the Initiation and Progression of Post-Traumatic Osteoarthritis
,”
Osteoarthritis Cartilage
,
25
(
1
), pp.
108
117
.10.1016/j.joca.2016.08.008
14.
Cao
,
L.
,
Youn
,
I.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2006
, “
Compressive Properties of Mouse Articular Cartilage Determined in a Novel Micro-Indentation Test Method and Biphasic Finite Element Model
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
766
771
.10.1115/1.2246237
15.
Chiravarambath
,
S.
,
Simha
,
N. K.
,
Namani
,
R.
, and
Lewis
,
J. L.
,
2009
, “
Poroviscoelastic Cartilage Properties in the Mouse From Indentation
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
011004
.10.1115/1.3005199
16.
Nia
,
H. T.
,
Gauci
,
S. J.
,
Azadi
,
M.
,
Hung
,
H. H.
,
Frank
,
E.
,
Fosang
,
A. J.
,
Ortiz
,
C.
, and
Grodzinsky
,
A. J.
,
2015
, “
High-Bandwidth AFM-Based Rheology is a Sensitive Indicator of Early Cartilage Aggrecan Degradation Relevant to Mouse Models of Osteoarthritis
,”
J. Biomech.
,
48
(
1
), pp.
162
165
.10.1016/j.jbiomech.2014.11.012
17.
Torzilli
,
P. A.
,
Deng
,
X. H.
, and
Ramcharan
,
M.
,
2006
, “
Effect of Compressive Strain on Cell Viability in Statically Loaded Articular Cartilage
,”
Biomech. Model Mechanobiol.
,
5
(
2–3
), pp.
123
132
.10.1007/s10237-006-0030-5
18.
Kotelsky
,
A.
,
Carrier
,
J. S.
,
Aggouras
,
A.
,
Richards
,
M. S.
, and
Buckley
,
M. R.
,
2020
, “
Evidence That Reduction in Volume Protects in Situ Articular Chondrocytes From Mechanical Impact
,”
Connect. Tissue Res.
,
61
(
3–4
), pp.
360
374
.10.1080/03008207.2020.1711746
19.
Kotelsky
,
A.
,
Carrier
,
J. S.
, and
Buckley
,
M. R.
,
2019
, “
Real-Time Visualization and Analysis of Chondrocyte Injury Due to Mechanical Loading in Fully Intact Murine Cartilage Explants
,”
J. Visualized Exp.
,
143
, p.
e58487
.10.3791/58487
20.
Kotelsky
,
A.
,
Woo
,
C. W.
,
Delgadillo
,
L. F.
,
Richards
,
M. S.
, and
Buckley
,
M. R.
,
2018
, “
An Alternative Method to Characterize the Quasi-Static, Nonlinear Material Properties of Murine Articular Cartilage
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011007
.10.1115/1.4038147
21.
Galbraith
,
W.
,
1955
, “
The Optical Measurement of Depth
,”
Q. J. Microsc. Sci.
,
S3-96
(
35
), pp.
285
288
.
22.
Halonen
,
K. S.
,
Mononen
,
M. E.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
,
Salo
,
J.
, and
Korhonen
,
R. K.
,
2014
, “
Deformation of Articular Cartilage During Static Loading of a Knee Joint–Experimental and Finite Element Analysis
,”
J. Biomech.
,
47
(
10
), pp.
2467
2474
.10.1016/j.jbiomech.2014.04.013
23.
Kabir
,
W.
,
Di Bella
,
C.
,
Choong
,
P. F. M.
, and
O'Connell
,
C. D.
,
2021
, “
Assessment of Native Human Articular Cartilage: A Biomechanical Protocol
,”
Cartilage
,
13
(
2_suppl
), pp.
427 s
437 s
.10.1177/1947603520973240
24.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
,
2000
, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
189
195
.10.1115/1.429641
25.
McNeil
,
P. L.
, and
Kirchhausen
,
T.
,
2005
, “
An Emergency Response Team for Membrane Repair
,”
Nat. Rev. Mol. Cell Biol.
,
6
(
6
), pp.
499
505
.10.1038/nrm1665
You do not currently have access to this content.