Abstract

Average-sized microfluidic artificial lungs consisting of rows and columns of fiber bundles with different column to row aspect ratios (AR) are numerically analyzed for flow characteristics, maximum gas transfer performance, minimum pressure drop, and proper wall shear stress (WSS) values in terms of biocompatibility. The flow is fully laminar and assumed to be incompressible and Newtonian. The transport analysis is performed using a combined convection-diffusion model, and the numerical simulations are carried out with the finite element method. The inlet volumetric flow is modeled as a sinusoidal wave function to simulate the cardiac cycle and its effect on the device performance. The model is first validated with experimental studies in steady-state condition and compared with existing correlations for transient conditions. Then, the validated model is used for a parametric study in both steady and pulsatile flow conditions. The results show that increasing the aspect ratio in fiber configuration leads to converging gas transfer, higher pressure drop, and higher WSS. While determining the optimum configuration, the acceptable shear stress levels play a decisive role to ensure biocompatibility. Also, it is observed that the steady analysis underestimates the gas transfer for higher aspect ratios.

References

1.
Quaderi
,
S. A.
, and
Hurst
,
J. R.
,
2018
, “
The Unmet Global Burden of COPD
,”
Global Health, Epidemiol. Genomics
,
3
, pp.
82
84
.10.1017/gheg.2018.1
2.
Lozano
,
R.
,
Naghavi
,
M.
,
Foreman
,
K.
,
Lim
,
S.
,
Shibuya
,
K.
,
Aboyans
,
V.
,
Abraham
,
J.
, et al.,
2012
, “
Global and Regional Mortality From 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010
,”
Lancet
,
380
(
9859
), pp.
2095
2128
.10.1016/S0140-6736(12)61728-0
3.
Arens
,
J.
,
Grottke
,
O.
,
Haverich
,
A.
,
Maier
,
L. S.
,
Schmitz-Rode
,
T.
,
Steinseifer
,
U.
, et al.,
2020
, “
Toward a Long-Term Artificial Lung
,”
ASAIO J.
,
66
(
8
), pp.
847
854
.10.1097/MAT.0000000000001139
4.
Kung
,
M. C.
,
Lee
,
J. K.
,
Kung
,
H. H.
, and
Mockros
,
L. F.
,
2008
, “
Microchannel Technologies for Artificial Lungs: (2) Screen-Filled Wide Rectangular Channels
,”
ASAIO J.
,
54
(
4
), pp.
383
389
.10.1097/MAT.0b013e31817ed9c8
5.
Thompson
,
A. J.
,
Marks
,
L. H.
,
Goudie
,
M. J.
,
Rojas-Pena
,
A.
,
Handa
,
H.
, and
Potkay
,
J. A.
,
2017
, “
A Small-Scale, Rolled-Membrane Microfluidic Artificial Lung Designed Towards Future Large Area Manufacturing
,”
Biomicrofluidics
,
11
(
2
), p.
024113
.10.1063/1.4979676
6.
Chan
,
K. Y.
,
Fujioka
,
H.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
,
2006
, “
Pulsatile Flow and Mass Transport Over an Array of Cylinders: Gas Transfer in a Cardiac-Driven Artificial Lung
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
85
96
.10.1115/1.2133761
7.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2010
, “
Micro-Scale Modeling of Flow and Oxygen Transfer in Hollow-Fiber Membrane Bundle
,”
J. Membr. Sci.
,
362
(
1–2
), pp.
172
183
.10.1016/j.memsci.2010.06.034
8.
Hormes
,
M.
,
Borchardt
,
R.
,
Mager
,
I.
,
Schmitz-Rode
,
T.
,
Behr
,
M.
, and
Steinseifer
,
U.
,
2011
, “
A Validated CFD Model to Predict O2 and CO2 Transfer Within Hollow Fiber Membrane Oxygenators
,”
Int. J. Artif. Organs
,
34
(
3
), pp.
317
325
.10.5301/IJAO.2011.6494
9.
Kaesler
,
A.
,
Rosen
,
M.
,
Schmitz-Rode
,
T.
,
Steinseifer
,
U.
, and
Arens
,
J.
,
2018
, “
Computational Modeling of Oxygen Transfer in Artificial Lungs
,”
Artif. Organs
,
42
(
8
), pp.
786
799
.10.1111/aor.13146
10.
Goldstick
,
T. K.
,
Ciuryla
,
V. T.
, and
Zuckerman
,
L.
,
1976
, “
Diffusion of Oxygen in Plasma and Blood
,”
Oxygen to Transport Tissue-II. Advances in Experimental Medicine and Biology
,
Grote
,
J.
,
Reneau
,
D.
, and
Thews
,
G.
, eds.,
Springer
,
Boston, MA
, pp.
183
190
.
11.
Berger
,
S. A.
, and
Jou
,
L. D.
,
2000
, “
Flows in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
347
382
.10.1146/annurev.fluid.32.1.347
12.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
, and
Verdonck
,
P. R.
,
2001
, “
Two-Dimensional Finite Element Model for Oxygen Transfer in Cross-Flow Hollow Fiber Membrane Artificial Lungs
,”
Int. J. Artif. Organs
,
24
(
9
), pp.
628
635
.10.1177/039139880102400904
13.
Kannel
,
W. B.
,
Kannel
,
C.
,
Paffenbarger
,
R. S.
, and
Cupples
,
L. A.
,
1987
, “
Heart Rate and Cardiovascular Mortality: The Framingham Study
,”
Am. Heart J.
,
113
(
6
), pp.
1489
1494
.10.1016/0002-8703(87)90666-1
14.
Collins
,
J. A.
,
Rudenski
,
A.
,
Gibson
,
J.
,
Howard
,
L.
, and
O’Driscoll
,
R.
,
2015
, “
Relating Oxygen Partial Pressure, Saturation and Content: The Haemoglobin–Oxygen Dissociation Curve
,”
Breathe
,
11
(
3
), pp.
194
201
.10.1183/20734735.001415
15.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Cook
,
K. E.
, and
Grotberg
,
J. B.
,
2008
, “
Pulsatile Flow and Oxygen Transport Past Cylindrical Fiber Arrays for an Artificial Lung: Computational and Experimental Studies
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031019
.10.1115/1.2907752
16.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Anderson
,
R. W.
, and
Leonard
,
R. J.
,
1994
, “
Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators
,”
ASAIO J.
,
40
(
4
), pp.
990
996
.10.1097/00002480-199440040-00016
17.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.10.3233/BIR-1991-283-415
18.
Keller
,
J. B.
,
1964
, “
Viscous Flow Through a Grating or Lattice of Cylinders
,”
J. Fluid Mech.
,
18
(
1
), pp.
94
96
.10.1017/S0022112064000064
19.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
20.
Churchill
,
S. W.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Mass Trans. Transfer-AMSE
,
99
(
2
), pp.
300
306
.10.1115/1.3450685
21.
Low
,
K. W. Q.
,
Van Loon
,
R.
,
Rolland
,
S. A.
, and
Sienz
,
J.
,
2017
, “
Formulation of Generalized Mass Transfer Correlations for Blood Oxygenator Design
,”
ASME J. Biomech. Eng.
,
139
(
3
), p.
031007
.10.1115/1.4035535
22.
Hellmann
,
A.
,
Klein
,
S.
,
Hesselmann
,
F.
,
Djeljadini
,
S.
,
Schmitz-Rode
,
T.
,
Jockenhoevel
,
S.
,
Cornelissen
,
C. G.
, and
Thiebes
,
A. L.
,
2020
, “
EndOxy: Mid-Term Stability and Shear Stress Resistance of Endothelial Cells on PDMS Gas Exchange Membranes
,”
Artif. Organs
,
44
(
10
), pp.
E419
E433
.10.1111/aor.13712
23.
Hathcock
,
J. J.
,
2006
, “
Flow Effects on Coagulation and Thrombosis
,”
Aeterioscler., Thromb., Vasc. Biol.
,
26
(
8
), pp.
1729
1737
.10.1161/01.ATV.0000229658.76797.30
24.
Falati
,
S.
,
Liu
,
Q.
,
Gross
,
P.
,
Merrill-Skoloff
,
G.
,
Chou
,
J.
,
Vandendries
,
E.
,
Celi
,
A.
, et al.,
2003
, “
Accumulation of Tissue Factor Into Developing Thrombi In Vivo is Dependent Upon Microparticle P-Selectin Glycoprotein Ligand 1 and Platelet P-Selectin
,”
J. Exp. Med.
,
197
(
11
), pp.
1585
1598
.10.1084/jem.20021868
You do not currently have access to this content.