Abstract

Birthing mechanics are poorly understood, though many injuries during childbirth are mechanical, like fetal and maternal tissue damage. Several biomechanical simulation models of parturition have been proposed to investigate birth, but many do not include the uterus. Additionally, most solid models rely on segmenting anatomical structures from clinical images to generate patient geometry, which can be time-consuming. This work presents two new parametric solid modeling methods for generating patient-specific, at-term uterine three-dimensional geometry. Building from an established method of modeling the sagittal uterine shape, this work improves the uterine coronal shape, especially where the fetal head joins the lower uterine wall. Solid models of the uterus and cervix were built from five at-term patients' magnetic resonance imaging (MRI) sets. Using anatomy measurements from MRI-segmented models, two parametric models were created—one that employs an averaged coronal uterine shape and one with multiple axial measurements of the coronal uterus. Through finite element analysis, the two new parametric methods were compared to the MRI-segmented high-fidelity method and a previously published elliptical low-fidelity method. A clear improvement in the at-term uterine shape was found using the two new parametric methods, and agreement in principal Lagrange strain directions was observed across all modeling methods. These methods provide an effective and efficient way to generate three-dimensional solid models of patient-specific maternal uterine anatomy, advancing possibilities for future research in computational birthing biomechanics.

ParametricModelDifferences

ParametricModelDifferences

Close modal

References

1.
Hamilton
,
E. B.
,
Martin
,
A. J.
, and
Osterman
,
J. K. M.
,
2022
, “
Births: Provisional Data for 2021
,”
National Center for Health Statistics (U.S.)
,
Hyattsville, MD
.
2.
Friedman
,
A. M.
,
Ananth
,
C. V.
,
Prendergast
,
E.
,
D'Alton
,
M. E.
, and
Wright
,
J. D.
,
2015
, “
Variation in and Factors Associated With Use of Episiotomy
,”
J. Am. Med. Assoc.
,
313
(
2
), pp.
197
199
.10.1001/jama.2014.14774
3.
Osterman
,
M. J. K.
,
Hamilton
,
B. E.
,
Martin
,
J. A.
,
Driscoll
,
A. K.
, and
Valenzuela
,
C. P.
,
2023
, “
Births: Final Data for 2021
,”
Natl. Vital Stat. Rep.
,
72
(
1
), pp.
1
53
.10.15620/cdc:122047
4.
2019
, “
Approaches to Limit Intervention During Labor and Birth
,”
Obstet.Gynecol.
,
133
(
2
), pp.
e164
e173
.10.1097/AOG.0000000000003074
5.
Chen
,
S.
, and
Grimm
,
M. J.
,
2021
, “
Childbirth Computational Models: Characteristics and Applications
,”
ASME J. Biomech. Eng.
,
143
(
5
), p.
050801
.10.1115/1.4049226
6.
Grimm
,
M. J.
,
2021
, “
Forces Involved With Labor and Delivery-A Biomechanical Perspective
,”
Ann. Biomed. Eng.
,
49
(
8
), pp.
1819
1835
.10.1007/s10439-020-02718-3
7.
Buttin
,
R.
,
Zara
,
F.
,
Shariat Torbaghan
,
B.
, and
Redarce
,
T.
,
2009
, “
A Biomechanical Model of the Female Reproductive System and the Fetus for the Realization of a Childbirth Virtual Simulator
,”
31st IEEE EMBC
, Minneapolis, MN, Sept. 3–6, pp.
5263
5266
.10.1109/IEMBS.2009.5334085
8.
Buttin
,
R.
,
Zara
,
F.
,
Shariat
,
B.
,
Redarce
,
T.
, and
Grangé
,
G.
,
2013
, “
Biomechanical Simulation of the Fetal Descent Without Imposed Theoretical Trajectory
,”
Comput. Methods Programs Biomed.
,
111
(
2
), pp.
389
401
.10.1016/j.cmpb.2013.04.005
9.
Lepage
,
J.
,
Jayyosi
,
C.
,
Lecomte-Grosbras
,
P.
,
Brieu
,
M.
,
Duriez
,
C.
,
Cosson
,
M.
, and
Rubod
,
C.
,
2015
, “
Biomechanical Pregnant Pelvic System Model and Numerical Simulation of Childbirth: Impact of Delivery on the Uterosacral Ligaments, Preliminary Results
,”
Int. Urogynecology J.
,
26
(
4
), pp.
497
504
.10.1007/s00192-014-2498-3
10.
Lin
,
Y.
,
2023
, “
Patient-Specific Multi-Scale, Multi-Physics Simulations of Human Uterine Contractions and Peristalsis During Pregnancy and the Menstrual Cycle
,” Washington University in St. Louis, St. Louis, MO, accessed Dec. 27, 2023, https://www.proquest.com/docview/2863711806/abstract/2647E505B4154E67PQ/1
11.
Telecom ParisTech
,
2023
, “
Femonum
,”
Telecom ParisTech
,
Paris, France
, accessed Dec. 28, 2023, http://femonum.telecom-paristech.fr/index.html
12.
Bibin
,
L.
,
Anquez
,
J.
,
de la Plata Alcalde
,
J. P.
,
Boubekeur
,
T.
,
Angelini
,
E. D.
, and
Bloch
,
I.
,
2010
, “
Whole-Body Pregnant Woman Modeling by Digital Geometry Processing With Detailed Uterofetal Unit Based on Medical Images
,”
IEEE Trans. Biomed. Eng.
,
57
(
10
), pp.
2346
2358
.10.1109/TBME.2010.2053367
13.
Yochum
,
M.
,
Laforêt
,
J.
, and
Marque
,
C.
,
2016
, “
An Electro-Mechanical Multiscale Model of Uterine Pregnancy Contraction
,”
Comput. Biol. Med.
,
77
, pp.
182
194
.10.1016/j.compbiomed.2016.08.001
14.
Zhang
,
M.
,
Tidwell
,
V.
,
Rosa
,
P. S. L.
,
Wilson
,
J. D.
,
Eswaran
,
H.
, and
Nehorai
,
A.
,
2016
, “
Modeling Magnetomyograms of Uterine Contractions During Pregnancy Using a Multiscale Forward Electromagnetic Approach
,”
PLos One
,
11
(
3
), p.
e0152421
.10.1371/journal.pone.0152421
15.
Ballit
,
A.
, and
Dao
,
T.-T.
,
2023
, “
Multiphysics and Multiscale Modeling of Uterine Contractions: Integrating Electrical Dynamics and Soft Tissue Deformation With Fiber Orientation
,”
Med. Biol. Eng. Comput.
,
62
(
3
), pp.
791
816
.10.1007/s11517-023-02962-4
16.
Ballit
,
A.
,
Hivert
,
M.
,
Rubod
,
C.
, and
Dao
,
T.-T.
,
2023
, “
Fast Soft-Tissue Deformations Coupled With Mixed Reality Toward the Next-Generation Childbirth Training Simulator
,”
Med. Biol. Eng. Comput.
,
61
(
8
), pp.
2207
2226
.10.1007/s11517-023-02864-5
17.
Nguyen-Le
,
D. H.
,
Ballit
,
A.
, and
Dao
,
T.-T.
,
2023
, “
A Novel Deep Learning-Driven Approach for Predicting the Pelvis Soft-Tissue Deformations Toward a Real-Time Interactive Childbirth Simulation
,”
Eng. Appl. Artif. Intell.
,
126
, p.
107150
.10.1016/j.engappai.2023.107150
18.
Vila Pouca
,
M. C. P.
,
Ferreira
,
J. P. S.
,
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Mascarenhas
,
M. T.
, and
Natal Jorge
,
R. M.
,
2019
, “
Simulation of the Uterine Contractions and Foetus Expulsion Using a Chemo-Mechanical Constitutive Model
,”
Biomech. Model. Mechanobiol.
,
18
(
3
), pp.
829
843
.10.1007/s10237-019-01117-5
19.
Fidalgo
,
D. S.
,
Borges
,
M.
,
Pouca
,
M. C. P. V.
,
Oliveira
,
D. A.
,
Malanowska
,
E.
, and
Myers
,
K. M.
,
2022
, “
On the Effect of Irregular Uterine Activity During a Vaginal Delivery Using an Electro-Chemo-Mechanical Constitutive Model
,”
J. Mech. Behav. Biomed. Mater.
,
131
, p.
105250
.10.1016/j.jmbbm.2022.105250
20.
Westervelt
,
A. R.
,
Fernandez
,
M.
,
House
,
M.
,
Vink
,
J.
,
Nhan-Chang
,
C.-L.
,
Wapner
,
R.
, and
Myers
,
K. M.
,
2017
, “
A Parameterized Ultrasound-Based Finite Element Analysis of the Mechanical Environment of Pregnancy
,”
ASME J. Biomech. Eng.
,
139
(
5
), p. 051004.10.1115/1.4036259
21.
Louwagie
,
E. M.
,
Carlson
,
L.
,
Over
,
V.
,
Mao
,
L.
,
Fang
,
S.
,
Westervelt
,
A.
,
Vink
,
J.
, et al.,
2021
, “
Longitudinal Ultrasonic Dimensions and Parametric Solid Models of the Gravid Uterus and Cervix
,”
PLos One
,
16
(
1
), p.
e0242118
.10.1371/journal.pone.0242118
22.
Joyce
,
E.
,
Diaz
,
P.
,
Tamarkin
,
S.
,
Moore
,
R.
,
Strohl
,
A.
,
Stetzer
,
B.
,
Kumar
,
D.
,
Sacks
,
M.
, and
Moore
,
J.
,
2016
, “
In-Vivo Stretch of Term Human Fetal Membranes
,”
Placenta
,
38
, pp.
57
66
.10.1016/j.placenta.2015.12.011
23.
Fang
,
S.
,
Louwagie
,
E. M.
,
Carlson
,
L.
,
Over
,
V. H. M.
,
Mao
,
L.
,
Westervelt
,
A. R.
,
Vink
,
J.-S. Y.
, et al.,
2020
, “
Patient-Specific Parametric Models of the Gravid Uterus and Cervix From 2D Ultrasound: MRI Solid Models
,”
Columbia University Libraries Academic Commons
.10.7916/d8-gxv7-2z02
24.
Louwagie
,
E. M.
,
Rajasekharan
,
D.
,
Feder
,
A. D.
,
Fang
,
S.
,
Nhan-Chang
,
C.-L.
,
Mourad
,
M.
, and
Myers
,
K. M.
,
2023
, “
Parametric Solid Models of the at-Term Uterus From Magnetic Resonance Images: Online Resources
,”
Columbia University Libraries Academic Commons
.10.7916/w8jy-9q54
25.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
26.
Linkert
,
M.
,
Rueden
,
C. T.
,
Allan
,
C.
,
Burel
,
J.-M.
,
Moore
,
W.
,
Patterson
,
A.
,
Loranger
,
B.
, et al.,
2010
, “
Metadata Matters: Access to Image Data in the Real World
,”
J. Cell Biol.
,
189
(
5
), pp.
777
782
.10.1083/jcb.201004104
27.
Louwagie
,
E. M.
,
Over
,
V. H. M.
,
Carlson
,
L.
,
Vink
,
J.-S. Y.
,
Hall
,
T. M.
,
Feltovich
,
H.
, and
Myers
,
K. M.
,
2020
, “
Patient-Specific Parametric Models of the Gravid Uterus and Cervix From 2D Ultrasound
,” Columbia University Libraries Academic Commons.10.7916/d8-wxem-e863
28.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
29.
Maas
,
S.
,
Herron
,
M.
,
Weiss
,
J.
, and
Ateshian
,
G.
,
2021
, “
Subsection 2.3.2 of FEBio Theory Manual: Strain
,” accessed Nov. 4, https://help.febio.org/FEBioTheory/FEBio_tm_3-4-Subsection-2.3.2.html
30.
Conrad
,
J. T.
,
Johnson
,
W. L.
,
Kuhn
,
W. K.
, and
Hunter
,
C. A.
,
1966
, “
Passive Stretch Relationships in Human Uterine Muscle
,”
Am. J. Obstetrics Gynecol.
,
96
(
8
), pp.
1055
1059
.10.1016/0002-9378(66)90513-8
31.
Buhimschi
,
C. S.
,
Buhimschi
,
I. A.
,
Malinow
,
A. M.
, and
Weiner
,
C. P.
,
2004
, “
Intrauterine Pressure During the Second Stage of Labor in Obese Women
,”
Obstet. Gynecol.
,
103
(
2
), pp.
225
230
.10.1097/01.AOG.0000102706.84063.C7
32.
Maas
,
S.
,
Herron
,
M.
,
Weiss
,
J.
, and
Ateshian
,
G.
,
2021
, “
Subsection 5.2.3 of FEBio Theory Manual: Neo-Hookean Hyperelasticity
,” accessed Nov. 4, https://help.febio.org/FEBioTheory/FEBio_tm_3-4-Subsection-5.2.3.html
33.
The MathWorks Inc.
,
2024
, “
Two-Sample Kolmogorov-Smirnov test - MATLAB kstest2
,”
The MathWorks Inc.
,
Natick, MA
, accessed Jan. 16, 2024, https://www.mathworks.com/help/stats/kstest2.html
34.
Galappaththige
,
S.
,
Gray
,
R. A.
,
Costa
,
C. M.
,
Niederer
,
S.
, and
Pathmanathan
,
P.
,
2022
, “
Credibility Assessment of Patient-Specific Computational Modeling Using Patient-Specific Cardiac Modeling as an Exemplar
,”
PLos Comput. Biol.
,
18
(
10
), p.
e1010541
.10.1371/journal.pcbi.1010541
35.
Louwagie
,
E. M.
,
Rajasekharan
,
D.
,
Feder
,
A. D.
,
Fang
,
S.
,
Nhan-Chang
,
C.-L.
,
Mourad
,
M.
, and
Myers
,
K.
,
2023
, “
Parametric Solid Models of the at-Term Uterus From Magnetic Resonance Images: Solid and Finite Element Models
,”
Columbia University Libraries Academic Commons
.10.7916/ba81-z673
36.
Weiss
,
S.
,
Jaermann
,
T.
,
Schmid
,
P.
,
Staempfli
,
P.
,
Boesiger
,
P.
,
Niederer
,
P.
,
Caduff
,
R.
, and
Bajka
,
M.
,
2006
, “
Three-Dimensional Fiber Architecture of the Nonpregnant Human Uterus Determined Ex Vivo Using Magnetic Resonance Diffusion Tensor Imaging
,”
Anatomical Rec. Part A: Discoveries Mol., Cellular, Evol. Biol.
,
288A
(
1
), pp.
84
90
.10.1002/ar.a.20274
37.
Lutton
,
E. J.
,
Lammers
,
W. J. E. P.
,
James
,
S.
,
van den Berg
,
H. A.
, and
Blanks
,
A. M.
,
2017
, “
A Computational Method for Three-Dimensional Reconstruction of the Microarchitecture of Myometrial Smooth Muscle From Histological Sections
,”
PLos One
,
12
(
3
), p.
e0173404
.10.1371/journal.pone.0173404
38.
Al-Zirqi
,
I.
,
Stray-Pedersen
,
B.
,
Forsén
,
L.
,
Daltveit
,
A.-K.
, and
Vangen
,
S.
,
2016
, “
Uterine Rupture: Trends Over 40 Years
,”
BJOG: Int. J. Obstet. Gynaecol.
,
123
(
5
), pp.
780
787
.10.1111/1471-0528.13394
39.
Roeder
,
H. A.
,
Cramer
,
S. F.
, and
Leppert
,
P. C.
,
2012
, “
A Look at Uterine Wound Healing Through a Histopathological Study of Uterine Scars
,”
Reprod. Sci.
,
19
(
5
), pp.
463
473
.10.1177/1933719111426603
40.
Scott
,
A. K.
,
Louwagie
,
E. M.
,
Myers
,
K. M.
, and
Oyen
,
M. L.
,
2023
, “
Biomechanical Modeling of Cesarean Section Scars and Scar Defects
,”
bioRxiv
.10.1101/2023.11.03.565565
You do not currently have access to this content.