Abstract

This paper introduces a hands-on laboratory exercise focused on assembling and testing a hybrid soft-rigid active finger prosthetic for biomechanical and biomedical engineering (BME) education. This hands-on laboratory activity focuses on the design of a myoelectric finger prosthesis, integrating mechanical, electrical, sensor (i.e., inertial measurement units (IMUs), electromyography (EMG)), pneumatics, and embedded software concepts. We expose students to a hybrid soft-rigid robotic system, offering a flexible, modifiable lab activity that can be tailored to instructors' needs and curriculum requirements. All necessary files are made available in an open-access format for implementation. Off-the-shelf components are all purchasable through global vendors (e.g., DigiKey Electronics, McMaster-Carr, Amazon), costing approximately USD 100 per kit, largely with reusable elements. We piloted this lab with 40 undergraduate engineering students in a neural and rehabilitation engineering upper year elective course, receiving excellent positive feedback. Rooted in real-world applications, the lab is an engaging pedagogical platform, as students are eager to learn about systems with tangible impacts. Extensions to the lab, such as follow-up clinical (e.g., prosthetist) and/or technical (e.g., user-device interface design) discussion, are a natural means to deepen and promote interdisciplinary hands-on learning experiences. In conclusion, the lab session provides an engaging journey through the lifecycle of the prosthetic finger research and design process, spanning conceptualization and creation to the final assembly and testing phases.

References

1.
Knudson
,
D.
, and
Wallace
,
B.
,
2021
, “
Student Perceptions of Low-Tech Active Learning and Mastery of Introductory Biomechanics Concepts
,”
Sports Biomech.
,
20
(
4
), pp.
458
468
.10.1080/14763141.2019.1570322
2.
Lindvig
,
K.
, and
Ulriksen
,
L.
,
2019
, “
Different, Difficult, and Local: A Review of Interdisciplinary Teaching Activities
,”
Rev. Higher Educ.
,
43
(
2
), pp.
697
725
.10.1353/rhe.2019.0115
3.
Jackson
,
A.
,
Mentzer
,
N.
, and
Kramer-Bottiglio
,
R.
,
2021
, “
Increasing Gender Diversity in Engineering Using Soft Robotics
,”
J. Eng. Educ.
,
110
(
1
), pp.
143
160
.10.1002/jee.20378
4.
Fink
,
L. D.
,
2013
,
Creating Significant Learning Experiences: An Integrated Approach to Designing College Courses
,
Jossey-Bass, Wiley & Sons
,
San Francisco, CA
.
5.
High Education & Beyond
,
2022
,
Current and Emerging Practices in Engineering Education
, Engineers Canada, Ottawa, ON, Canada.https://engineerscanada.ca/sites/default/files/2022-05/Current%20and%20Emerging%20Practices%20in%20Engineering%20Education_EN.pdf
6.
Wiggins
,
G. P.
, and
McTighe
,
J.
,
2005
,
Understanding by Design
,
Association for Supervision and Curriculum Development
,
Alexandria, VA
.
7.
Pfund
,
C.
,
Miller
,
S.
,
Brenner
,
K.
,
Bruns
,
P.
,
Chang
,
A.
,
Ebert-May
,
D.
,
Fagen
,
A. P.
, et al.,
2009
, “
Summer Institute to Improve University Science Teaching
,”
Science
,
324
(
5926
), pp.
470
471
.10.1126/science.1170015
8.
Holland
,
D. P.
,
Park
,
E. J.
,
Polygerinos
,
P.
,
Bennett
,
G. J.
, and
Walsh
,
C. J.
,
2014
, “
The Soft Robotics Toolkit: Shared Resources for Research and Design
,”
Soft Robot.
,
1
(
3
), pp.
224
230
.10.1089/soro.2014.0010
9.
Holland
,
D. P.
,
Berndt
,
S.
,
Herman
,
M.
, and
Walsh
,
C. J.
,
2018
, “
Growing the Soft Robotics Community Through Knowledge-Sharing Initiatives
,”
Soft Robot.
,
5
(
2
), pp.
119
121
.10.1089/soro.2018.29013.dph
10.
Jackson
,
A.
,
Zhang
,
J.
,
Kramer
,
R.
, and
Mentzer
,
N.
,
2017
, “
Board # 96: Design-Based Research and Soft Robotics to Broaden the STEM Pipeline (Work in Progress)
,”
ASEE Annual Conference & Exposition Proceedings
, Columbus, OH, June 24–28.10.18260/1-2--27963
11.
Zhang
,
J.
,
Jackson
,
A.
,
Mentzer
,
N.
, and
Kramer
,
R.
,
2017
, “
A Modular, Reconfigurable Mold for a Soft Robotic Gripper Design Activity
,”
Front. Robot, AI
,
4
, p.
46
.10.3389/frobt.2017.00046
12.
Shah
,
S.
,
Beaudette
,
A.
,
Bergandine
,
D.
,
Devmal
,
S.
,
Walsh
,
C.
, and
Golecki
,
H.
,
2021
, “
Adapting Soft Robotics Outreach to Teacher-Delivered Curriculum in the Virtual Classroom (Work in Progress)
,” ASEE Virtual Annual Conference Content Access Proceedings,
epub
.10.18260/1-2--36651
13.
Ashuri
,
T.
,
Armani
,
A.
,
Jalilzadeh
,
Hamidi
,
R.
,
Reasnor
,
T.
,
Ahmadi
,
S.
, and
Iqbal
,
K.
,
2020
, “
Biomedical Soft Robots: Current Status and Perspective
,”
Biomed. Eng. Lett.
,
10
(
3
), pp.
369
385
.10.1007/s13534-020-00157-6
14.
Culha
,
U.
,
Hughes
,
J.
,
Rosendo
,
A.
,
Giardina
,
F.
, and
Iida
,
F.
,
2017
, “
Design Principles for Soft-Rigid Hybrid Manipulators
,”
Soft Robotics: Trends, Applications and Challenges
,
C.
Laschi
,
J.
Rossiter
,
F.
Iida
,
M.
Cianchetti
, and
L.
Margheri
, eds.,
Springer International Publishing
,
Berlin
, pp.
87
94
.
15.
Love
,
T. S.
,
Cysyk
,
J. P.
,
Attaluri
,
A.
,
Tunks
,
R. D.
,
Harter
,
K.
, and
Sipos
,
R.
,
2023
, “
Examining Science and Technology/Engineering Educators' Views of Teaching Biomedical Concepts Through Physical Computing
,”
J. Sci. Educ. Technol.
,
32
(
1
), pp.
96
110
.10.1007/s10956-022-09996-7
16.
Gassert
,
J.
, and
Enderle
,
J.
,
2008
, “
Design Versus Research in BME Accreditation [ABET Requirements and Why Research Cannot Substitute for Design
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
2
), pp.
80
85
.10.1109/EMB.2007.913554
17.
White
,
J. A.
,
Gaver
,
D. P.
,
Butera
,
R. J.
,
Choi
,
B.
,
Dunlop
,
M. J.
,
Grande-Allen
,
K. J.
,
Grosberg
,
A.
, et al.,
2020
, “
Core Competencies for Undergraduates in Bioengineering and Biomedical Engineering: Findings, Consequences, and Recommendations
,”
Ann. Biomed. Eng.
,
48
(
3
), pp.
905
912
.10.1007/s10439-020-02468-2
18.
Knudson
,
D.
,
2013
, “
Physics and Biomechanics Education Research: Improving Learning of Biomechanical Concepts
,”
31 International Conference on Biomechanics in Sports
, Taipei, Taiwan, July 7–11.https://ojs.ub.uni-konstanz.de/cpa/article/view/5525
19.
University of Southern California
,
2023
, “
The Freehand Project
,” University of Southern California, Los Angeles, CA, accessed Nov. 21, 2023, https://www.3d4e.org/freehand
20.
Jiang
,
N.
,
Dosen
,
S.
,
Muller
,
K.-R.
, and
Farina
,
D.
,
2012
, “
Myoelectric Control of Artificial Limbs—Is There a Need to Change Focus? [In the Spotlight]
,”
IEEE Signal Process. Mag.
,
29
(
5
), pp.
152
150
.10.1109/MSP.2012.2203480
21.
Newstetter
,
W. C.
,
2006
, “
Fostering Integrative Problem Solving in Biomedical Engineering: The PBL Approach
,”
Ann. Biomed. Eng.
,
34
(
2
), pp.
217
225
.10.1007/s10439-005-9034-z
22.
Katona
,
P. G.
,
2006
, “
Biomedical Engineering and the Whitaker Foundation: A Thirty-Year Partnership
,”
Ann. Biomed. Eng.
,
34
(
6
), pp.
904
916
.10.1007/s10439-006-9087-7
23.
Linsenmeier
,
R. A.
, and
Saterbak
,
A.
,
2020
, “
Fifty Years of Biomedical Engineering Undergraduate Education
,”
Ann. Biomed. Eng.
,
48
(
6
), pp.
1590
1615
.10.1007/s10439-020-02494-0
24.
University of Waterloo
,
2023
, “
Biomedical Engineering (Course Descriptions - Undergraduate Calendar 2023–2024)
,” University of Waterloo, Waterloo, ON, Canada, accessed Nov. 21, 2023, https://ucalendar.uwaterloo.ca/2324/COURSE/course-BME.html.
25.
University of Waterloo
,
2023
, “
Biomechanics Option (Electrical and Computer Engineering)
,” University of Waterloo, Waterloo, ON, Canada, accessed Nov. 21, 2023, https://uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-issues/options-and-minors/biomechanics-option
26.
Ziegler-Graham
,
K.
,
MacKenzie
,
E. J.
,
Ephraim
,
P. L.
,
Travison
,
T. G.
, and
Brookmeyer
,
R.
,
2008
, “
Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050
,”
Arch. Phys. Med. Rehabil.
,
89
(
3
), pp.
422
429
.10.1016/j.apmr.2007.11.005
27.
Graham
,
E. M.
,
Hendrycks
,
R.
,
Baschuk
,
C. M.
,
Atkins
,
D. J.
,
Keizer
,
L.
,
Duncan
,
C. C.
, and
Mendenhall
,
S. D.
,
2021
, “
Restoring Form and Function to the Partial Hand Amputee: Prosthetic Options From the Fingertip to the Palm
,”
Hand Clin.
,
37
(
1
), pp.
167
187
.10.1016/j.hcl.2020.09.013
28.
Lee
,
P. S.
,
Sjaarda
,
C.
,
Cornelious
,
R.
,
Gao
,
R. Z.
,
Lu
,
K.
, and
Ren
,
C. L.
,
2023
, “
Naturally Compliant Dexterous Anthropomorphic Hand Via Novel Modular Soft-Rigid Hybrid Robotics Approach: Design Rationale, Assembly Methods, and Evaluation
,” 32nd IEEE International Conference on Robot and Human Interactive Communication (
RO-MAN
),
Busan
, South Korea, Aug. 28–31, pp.
2281
2287
.https://ieeexplore.ieee.org/abstract/document/10309552
29.
Guo
,
N.
,
Sun
,
Z.
,
Wang
,
X.
,
Yeung
,
E. H. K.
,
To
,
M. K. T.
,
Li
,
X.
, and
Hu
,
Y.
,
2020
, “
Simulation Analysis for Optimal Design of Pneumatic Bellow Actuators for Soft-Robotic Glove
,”
Biocybern. Biomed. Eng.
,
40
(
4
), pp.
1359
1368
.10.1016/j.bbe.2020.08.002
30.
Jung
,
W.
,
Kang
,
Y.
,
Han
,
S.
, and
Hwang
,
Y.
,
2019
, “
Biocompatible Micro, Soft Bellow Actuator Rapidly Manufactured Using 3D-Printed Soluble Mold
,”
J. Micromech. Microeng.
,
29
(
12
), p.
125005
.10.1088/1361-6439/ab477f
31.
Gaiser
,
IN.
,
Pylatiuk
,
C.
,
Schulz
,
S.
,
Kargov
,
A.
,
Oberle
,
R.
, and
Werner
,
T.
,
2009
, “
The FLUIDHAND III: A Multifunctional Prosthetic Hand
,”
JPO: J. Prosthet. Orthot.
,
21
(
2
), pp.
91
96
.10.1097/JPO.0b013e3181a1ca54
32.
Schulz
,
S.
,
Pylatiuk
,
C.
, and
Bretthauer
,
G.
,
1999
, “
A New Class of Flexible Fluidic Actuators and Their Applications in Medical Engineering
,”
At - Automatisierungstechnik
,
47
(
8
), pp.
390
395
.10.1524/auto.1999.47.8.390
33.
Connolly
,
F.
,
Wagner
,
D. A.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2019
, “
Sew-Free Anisotropic Textile Composites for Rapid Design and Manufacturing of Soft Wearable Robots
,”
Extreme Mech. Lett.
,
27
, pp.
52
58
.10.1016/j.eml.2019.01.007
34.
Lee
,
P. S.
,
Gao
,
R. Z.
,
Colpitts
,
A.
,
Murdock
,
R. W.
,
Dittmer
,
D.
,
Schirm
,
A.
,
Tung
,
J. Y.
, and
Ren
,
C. L.
,
2022
, “
Air Microfluidics-Enabled Soft Robotic Transtibial Prosthesis Socket Liner Toward Dynamic Management of Residual Limb Contact Pressure and Volume Fluctuation
,”
Biomicrofluidics
,
16
(
3
), p.
34107
.10.1063/5.0087900
35.
Siviy
,
C.
,
Baker
,
L. M.
,
Quinlivan
,
B. T.
,
Porciuncula
,
F.
,
Swaminathan
,
K.
,
Awad
,
L. N.
, and
Walsh
,
C. J.
,
2022
, “
Opportunities and Challenges in the Development of Exoskeletons for Locomotor Assistance
,”
Nat. Biomed. Eng.
,
7
(
4
), pp.
456
472
.10.1038/s41551-022-00984-1
36.
Ates
,
H. C.
,
Nguyen
,
P. Q.
,
Gonzalez-Macia
,
L.
,
Morales-Narváez
,
E.
,
Güder
,
F.
,
Collins
,
J. J.
, and
Dincer
,
C.
,
2022
, “
End-to-End Design of Wearable Sensors
,”
Nat. Rev. Mater.
,
7
(
11
), pp.
887
907
.10.1038/s41578-022-00460-x
37.
Kim
,
J.
,
Campbell
,
A. S.
,
de Ávila
,
B. E.-F.
, and
Wang
,
J.
,
2019
, “
Wearable Biosensors for Healthcare Monitoring
,”
Nat. Biotechnol.
,
37
(
4
), pp.
389
406
.10.1038/s41587-019-0045-y
38.
Hemalatha
,
R. J.
,
Chandrasekaran
,
R.
,
Thamizhvani
,
T. R.
,
Josephin Arockia Dhivya
,
A.
,
Sangeethapriya
,
K.
,
Keerthana
,
A.
, and
Srividhya
,
G.
,
2020
, “Chapter 3 -
Biomedical Instrument and Automation: Automatic Instrumentation in Biomedical Engineering
,”
Handbook of Data Science Approaches for Biomedical Engineering
, Elsevier, Amsterdam, The Netherlands,
pp.
69
101
.10.1016/B978-0-12-818318-2.00003-9
39.
Stojanovic
,
R.
,
Hagara
,
M.
,
Ondracek
,
O.
, and
Caplanova
,
A.
,
2015
, “
Addressing the Need for Practical Exercises in Biomedical Engineering Education for Growing Economies
,” 4th Mediterranean Conference on Embedded Computing (
MECO
),
Budva, Montenegro, June 14–18, pp.
416
421
.10.1109/MECO.2015.7181958
40.
Ham
,
T.
,
Cyrus Rezvanifar
,
S.
,
Thomas
,
V. S.
, and
Amini
,
R.
,
2018
, “
Using Hands-On Physical Computing Projects to Teach Computer Programming to Biomedical Engineering Students
,”
ASME J. Biomech. Eng.
,
140
(
8
), p.
081007
.10.1115/1.4040226
41.
Rosario
,
R.
,
Hopper
,
T. S.
, and
Huang-Saad
,
A.
,
2022
, “
Applying Research-Based Teaching Strategies in a Biomedical Engineering Programming Course: Introduction to Computer Aided Diagnosis
,”
Biomed. Eng. Educ.
,
2
(
1
), pp.
41
59
.10.1007/s43683-021-00057-w
42.
Ngah
,
T.
,
2009
,
3916 Bemis Activated Sewfree Tape Datasheet
, Bemis, Sheboygan Falls, WI, accessed July 12, 2023, https://www.can-dotape.com/wp-content/uploads/2015/11/3916-Bemis-Activated-Sewfree-Tape-Data.pdf
43.
Schmitt
,
F.
,
Piccin
,
O.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2018
, “
Soft Robots Manufacturing: A Review
,”
Front. Robot. AI
,
5
, p.
84
.10.3389/frobt.2018.00084
44.
Gao
,
R. Z.
,
Mai
,
V. N. T.
,
Levinski
,
N.
,
Kormylo
,
J. M.
,
Murdock
,
R. W.
,
Dickerson
,
C. R.
, and
Ren
,
C. L.
,
2022
, “
A Novel Air Microfluidics-Enabled Soft Robotic Sleeve: Toward Realizing Innovative Lymphedema Treatment
,”
Biomicrofluidics
,
16
(
3
), p.
34101
.10.1063/5.0079898
45.
Kara
,
A.
, and
Zeren
,
D.
,
2022
, “
The Relationship Between the Net Promoter Score (NPS) and Students' College Experiences at a State University
,”
Int. Rev. Public Nonprofit Mark.
,
20
(
4
), pp.
721
737
.10.1007/s12208-022-00352-4
46.
Gamarra-Moreno
,
A.
,
Gamarra-Moreno
,
D.
,
Gamarra-Moreno
,
A.
, and
Gamarra-Moreno
,
J.
,
2021
, “
Assessing Problem-Based Learning Satisfaction Using Net Promoter Score in a Virtual Learning Environment
,” IEEE World Conference on Engineering Education (
EDUNINE
),
Guatemala City, Guatemala
, Mar. 14–17, pp.
1
5
.10.1109/EDUNINE51952.2021.9429104
47.
Kara
,
A.
,
Mintu-Wimsatt
,
A.
, and
Spillan
,
J. E.
,
2022
, “
An Application of the Net Promoter Score in Higher Education
,”
J. Mark. Higher Educ.
, pp.
1
24
.10.1080/08841241.2021.2018088
48.
Gitlin
,
J.
,
2023
, “
What is a Good Net Promoter Score? And How Does It Vary Across Industries?
,” SurveyMonkey, San Mateo, CA, accessed July 12, 2023, https://www.surveymonkey.com/curiosity/what-is-a-good-net-promoter-score/
49.
Van den Beemt
,
A.
,
MacLeod
,
M.
,
Van der Veen
,
J.
,
Van de Ven
,
A.
,
van Baalen
,
S.
,
Klaassen
,
R.
, and
Boon
,
M.
,
2020
, “
Interdisciplinary Engineering Education: A Review of Vision, Teaching, and Support
,”
J. Eng. Educ.
,
109
(
3
), pp.
508
555
.10.1002/jee.20347
50.
Feisel
,
L. D.
, and
Rosa
,
A. J.
,
2005
, “
The Role of the Laboratory in Undergraduate Engineering Education
,”
J. Eng. Educ.
,
94
(
1
), pp.
121
130
.10.1002/j.2168-9830.2005.tb00833.x
51.
Prince
,
M.
,
2004
, “
Does Active Learning Work? A Review of the Research
,”
J. Eng. Educ.
,
93
(
3
), pp.
223
231
.10.1002/j.2168-9830.2004.tb00809.x
52.
ABET
,
2021
, “
Criteria for Accrediting Engineering Programs, 2019 – 2020
,” accessed Nov. 14, 2023, https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2019-2020/#GC2
53.
Engineers Canada
,
2020
,
Canadian Engineering Accreditation Board - 2020 Accreditation Criteria and Procedures
, Engineers Canada,
Ottawa, ON, Canada
.
54.
International Engineering Alliance
,
2014
,
25 Years of the Washington Accord - Celebrating International Engineering Education Standards and Recognition
, International Engineering Alliance Secretariat,
Wellington, New Zealand
.
55.
Li
,
W.
,
Shi
,
P.
, and
Yu
,
H.
,
2021
, “
Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future
,”
Front. Neurosci.
,
15
, p.
621885
.10.3389/fnins.2021.621885
56.
Aggarwal
,
P.
, and
O'Brien
,
C. L.
,
2008
, “
Social Loafing on Group Projects
,”
J. Mark. Educ.
,
30
(
3
), pp.
255
264
.10.1177/0273475308322283
57.
Behrens
,
A.
,
Atorf
,
L.
,
Schwann
,
R.
,
Neumann
,
B.
,
Schnitzler
,
R.
,
Balle
,
J.
,
Herold
,
T.
, et al.,
2010
, “
MATLAB Meets LEGO Mindstorms—A Freshman Introduction Course Into Practical Engineering
,”
IEEE Trans. Educ.
,
53
(
2
), pp.
306
317
.10.1109/TE.2009.2017272
58.
Weiner
,
P.
,
Starke
,
J.
,
Hundhausen
,
F.
,
Beil
,
J.
, and
Asfour
,
T.
,
2018
, “
The KIT Prosthetic Hand: Design and Control
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
Madrid, Spain, Oct. 1–5, pp.
3328
3334
.10.1109/IROS.2018.8593851
59.
Huang-Saad
,
A.
,
Stegemann
,
J.
, and
Shea
,
L.
,
2020
, “
Developing a Model for Integrating Professional Practice and Evidence-Based Teaching Practices Into BME Curriculum
,”
Ann. Biomed. Eng.
,
48
(
2
), pp.
881
892
.10.1007/s10439-019-02427-6
60.
Segil
,
J. L.
,
Huddle
,
S. A.
, and
Weir
,
R. F. F.
,
2017
, “
Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
6
), pp.
618
627
.10.1109/TNSRE.2016.2586846
61.
Segil
,
J. L.
,
Controzzi
,
M.
,
Weir
,
R. F. F.
, and
Cipriani
,
C.
,
2014
, “
Comparative Study of State-of-the-Art Myoelectric Controllers for Multigrasp Prosthetic Hands
,”
J. Rehabil. Res. Dev.
,
51
(
9
), pp.
1439
1454
.10.1682/JRRD.2014.01.0014
You do not currently have access to this content.