Abstract

Shoe manufacturing technology is advancing faster than new shoe designs can viably be evaluated in human subject trials. To aid in the design process, this paper presents a model for estimating how new shoe properties will affect runner performance. This model assumes runners choose their gaits to optimize an intrinsic, unknown objective function. To learn this objective function, a simple two-dimensional mechanical model of runners was used to predict their gaits under different objectives, and the resulting gaits were compared to data from real running trials. The most realistic model gaits, i.e., the ones that best matched the data, were obtained when the model runners minimized the impulse they experience from the ground as well as the mechanical work done by their leg muscles. Using this objective function, the gait and thus performance of running under different shoe conditions can be predicted. The simple model is sufficiently sensitive to predict the difference in performance of shoes with disruptive designs but cannot distinguish between existing shoes whose properties are fairly similar. This model therefore is a viable tool for coarse-grain exploration of the design space and identifying promising behaviors of truly novel shoe materials and designs.

References

1.
Rodrigo-Carranza
,
V.
,
González-Mohíno
,
F.
,
Santos del Cerro
,
J.
,
Santos-Concejero
,
J.
, and
González-Ravé
,
J. M.
,
2021
, “
Influence of Advanced Shoe Technology on the Top 100 Annual Performances in Men's Marathon From 2015 to 2019
,”
Sci. Rep.
,
11
(
1
), pp.
22458
22458
.10.1038/s41598-021-01807-0
2.
Zolfagharian
,
A.
,
Lakhi
,
M.
,
Ranjbar
,
S.
, and
Bodaghi
,
M.
,
1970
, “
Custom Shoe Sole Design and Modeling Toward 3D Printing
,”
Int. J. Bioprint.
,
7
(
4
), p.
396
.10.18063/ijb.v7i4.396
3.
Fuller
,
J.
,
Bellenger
,
C.
,
Thewlis
,
D.
,
Tsiros
,
M.
, and
Buckley
,
J.
,
2015
, “
The Effect of Footwear on Running Performance and Running Economy in Distance Runners
,”
Sports Med.
,
45
(
3
), pp.
411
422
.10.1007/s40279-014-0283-6
4.
McMahon
,
T. A.
, and
Greene
,
P. R.
,
1979
, “
The Influence of Track Compliance on Running
,”
J. Biomech.
,
12
(
12
), pp.
893
904
.10.1016/0021-9290(79)90057-5
5.
McMahon
,
T. A.
, and
Cheng
,
G. C.
,
1990
, “
The Mechanics of Running: How Does Stiffness Couple With Speed?
,”
J. Biomech.
,
23
(
Suppl 1
), pp.
65
78
.10.1016/0021-9290(90)90042-2
6.
Shen
,
Z. H.
, and
Seipel
,
J. E.
,
2012
, “
A Fundamental Mechanism of Legged Locomotion With Hip Torque and Leg Damping
,”
Bioinspiration Biomimetics
,
7
(
4
), p.
046010
.10.1088/1748-3182/7/4/046010
7.
Miller
,
R. H.
, and
Hamill
,
J.
,
2009
, “
Computer Simulation of the Effects of Shoe Cushioning on Internal and External Loading During Running Impacts
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
481
490
.10.1080/10255840802695437
8.
Wright
,
I.
,
Neptune
,
R.
,
van den Bogert
,
A.
, and
Nigg
,
B.
,
1998
, “
Passive Regulation of Impact Forces in Heel-Toe Running
,”
Clin. Biomech.
,
13
(
7
), pp.
521
531
.10.1016/S0268-0033(98)00025-4
9.
Wang
,
J. M.
,
Hamner
,
S. R.
,
Delp
,
S. L.
, and
Koltun
,
V.
,
2012
, “
Optimizing Locomotion Controllers Using Biologically-Based Actuators and Objectives
,”
ACM Trans. Graphics
,
31
(
4
), pp.
1
11
.10.1145/2185520.2185521
10.
van den Bogert
,
A. J.
,
Blana
,
D.
, and
Heinrich
,
D.
,
2011
, “
Implicit Methods for Efficient Musculoskeletal Simulation and Optimal Control
,”
Proc. IUTAM
,
2
, pp.
297
316
.10.1016/j.piutam.2011.04.027
11.
Lin
,
Y.-C.
,
Walter
,
J. P.
, and
Pandy
,
M. G.
,
2018
, “
Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait
,”
Ann. Biomed. Eng.
,
46
(
8
), pp.
1216
1227
.10.1007/s10439-018-2026-6
12.
McMahon
,
T. A.
, and
Greene
,
P. R.
,
1978
, “
Fast Running Tracks
,”
Sci. Am.
,
239
(
6
), pp.
148
163
.10.1038/scientificamerican1278-148
13.
Dorschky
,
E.
,
Krüger
,
D.
,
Kurfess
,
N.
,
Schlarb
,
H.
,
Wartzack
,
S.
,
Eskofier
,
B. M.
, and
van den Bogert
,
A. J.
,
2019
, “
Optimal Control Simulation Predicts Effects of Midsole Materials on Energy Cost of Running
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
8
), pp.
869
879
.10.1080/10255842.2019.1601179
14.
Nigg
,
B. M.
,
Mohr
,
M.
, and
Nigg
,
S. R.
,
2017
, “
Muscle Tuning and Preferred Movement Path – a Paradigm Shift
,”
Curr. Issues Sport Sci.
,
2
, pp.
1
12
.10.15203/CISS_2017.007
15.
Fukuchi
,
R. K.
,
Fukuchi
,
C. A.
, and
Duarte
,
M.
,
2017
, “
A Public Dataset of Running Biomechanics and the Effects of Running Speed on Lower Extremity Kinematics and Kinetics
,”
PeerJ
,
5
, p.
e3298
.10.7717/peerj.3298
16.
Mombaur
,
K.
,
2009
, “
Using Optimization to Create Self-Stable Human-Like Running
,”
Robotica
,
27
(
3
), pp.
321
330
.10.1017/S0263574708004724
17.
Schultz
,
G.
, and
Mombaur
,
K.
,
2010
, “
Modeling and Optimal Control of Human-Like Running
,”
IEEE/ASME Trans. Mechatron.
,
15
(
5
), pp.
783
792
.10.1109/TMECH.2009.2035112
18.
Koch
,
K. H.
,
Mombaur
,
K.
, and
Soueres
,
P.
,
2012
, “
Optimization-Based Walking Generation for Humanoid Robot
,”
IFAC Proc. Vol.
,
45
(
22
), pp.
498
504
.10.3182/20120905-3-HR-2030.00189
19.
Lengagne
,
S.
,
Vaillant
,
J.
,
Yoshida
,
E.
, and
Kheddar
,
A.
,
2013
, “
Generation of Whole-Body Optimal Dynamic Multi-Contact Motions
,”
Int. J. Rob. Res.
,
32
(
9–10
), pp.
1104
1119
.10.1177/0278364913478990
20.
Mombaur
,
K.
, and
Clever
,
D.
,
2017
, “
Inverse Optimal Control as a Tool to Understand Human Movement
,”
Geometric and Numerical Foundations of Movements
,
Springer International Publishing
,
Cham
, pp.
163
186
.
21.
Mombaur
,
K.
,
2018
, “
Humanoid Motion Optimization
,”
Humanoid Robotics: A Reference
,
Springer
,
Dordrecht
, The Netherlands, pp.
1805
1842
.
22.
Clever
,
D.
,
Malin Schemschat
,
R.
,
Felis
,
M. L.
, and
Mombaur
,
K.
,
2016
, “
Inverse Optimal Control Based Identification of Optimality Criteria in Whole-Body Human Walking on Level Ground
,” 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (
BioRob
),
Singapore
, June 26–29, pp.
1192
1199
.10.1109/BIOROB.2016.7523793
23.
Kleesattel
,
A. L. E. N.
, and
Mombaur
,
K.
,
2018
, “
Inverse Optimal Control Based Enhancement of Sprinting Motion Analysis With and Without Running-Specific Prostheses
,” 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (
Biorob
),
Enschede, The Netherlands, Aug. 26–29, pp.
556
562
.10.1109/BIOROB.2018.8488779
24.
Clever
,
D.
,
Hu
,
Y.
, and
Mombaur
,
K.
,
2018
, “
Humanoid Gait Generation in Complex Environments Based on Template Models and Optimality Principles Learned From Human Beings
,”
Int. J. Rob. Res.
,
37
(
10
), pp.
1184
1204
.10.1177/0278364918765620
25.
Clever
,
D.
, and
Mombaur
,
K.
,
2017
, “
On the Relevance of Common Humanoid Gait Generation Strategies in Human Locomotion: An Inverse Optimal Control Approach
,”
Modeling, Simulation and Optimization of Complex Processes HPSC 2015
,
Springer International Publishing
,
Cham
, pp.
27
40
.
26.
Schmitt
,
J.
, and
Clark
,
J.
,
2009
, “
Modeling Posture-Dependent Leg Actuation in Sagittal Plane Locomotion
,”
Bioinspiration Biomimetics
,
4
(
4
), p.
046005
.10.1088/1748-3182/4/4/046005
27.
Hu
,
Y.
, and
Mombaur
,
K.
,
2018
, “
Bio-Inspired Optimal Control Framework to Generate Walking Motions for the Humanoid Robot iCub Using Whole Body Models
,”
Appl. Sci.
,
8
(
2
), p.
278
.10.3390/app8020278
28.
Millard
,
M.
, and
Mombaur
,
K.
,
2019
, “
A Quick Turn of Foot: Rigid Foot-Ground Contact Models for Human Motion Prediction
,”
Front. Neurorob.
,
13
, pp.
62
62
.10.3389/fnbot.2019.00062
29.
Flash
,
T.
, and
Hogan
,
N.
,
1985
, “
The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model
,”
J. Neurosci.
,
5
(
7
), pp.
1688
1703
.10.1523/JNEUROSCI.05-07-01688.1985
30.
Gasparetto
,
A.
,
Lanzutti
,
A.
,
Vidoni
,
R.
, and
Zanotto
,
V.
,
2012
, “
Experimental Validation and Comparative Analysis of Optimal Time-Jerk Algorithms for Trajectory Planning
,”
Rob. Comput. Integr. Manuf.
,
28
(
2
), pp.
164
181
.10.1016/j.rcim.2011.08.003
31.
Iuppariello
,
L.
,
Romano
,
M.
,
D'Addio
,
G.
,
Bifulco
,
P.
,
Pappone
,
N.
, and
Cesarelli
,
M.
,
2014
, “
Comparison of Measured and Predicted Reaching Movements With a Robotic Rehabilitation Device
,” 2014 IEEE International Symposium on Medical Measurements and Applications (
MeMeA
), Lisboa, Portugal, June 11–12, pp.
1
6
.10.1109/MeMeA.2014.6860056
32.
Worobets
,
J.
,
Wannop
,
J. W.
,
Tomaras
,
E.
, and
Stefanyshyn
,
D.
,
2014
, “
Softer and More Resilient Running Shoe Cushioning Properties Enhance Running Economy
,”
Footwear Sci.
,
6
(
3
), pp.
147
153
.10.1080/19424280.2014.918184
33.
Penta
,
F.
,
Amodeo
,
G.
,
Gloria
,
A.
,
Martorelli
,
M.
,
Odenwald
,
S.
, and
Lanzotti
,
A.
,
2018
, “
Low-Velocity Impacts on a Polymeric Foam for the Passive Safety Improvement of Sports Fields: Meshless Approach and Experimental Validation
,”
Appl. Sci.
,
8
(
7
), p.
1174
.10.3390/app8071174
34.
Hill
,
A. V.
,
1964
, “
The Effect of Load on the Heat of Shortening of Muscle
,”
Proc. R. Soc. London, Ser. B
,
159
(
975
), pp.
297
318
.10.1098/rspb.1964.0004
35.
BOSCO
,
C.
, and
RUSKO
,
H.
,
1983
, “
The Effect of Prolonged Skeletal Muscle Stretch-Shortening Cycle on Recoil of Elastic Energy and on Energy Expenditure
,”
Acta Physiol. Scand.
,
119
(
3
), pp.
219
224
.10.1111/j.1748-1716.1983.tb07331.x
36.
Nigg
,
B.
,
Stefanyshyn
,
D.
,
Cole
,
G.
,
Stergiou
,
P.
, and
Miller
,
J.
,
2003
, “
The Effect of Material Characteristics of Shoe Soles on Muscle Activation and Energy Aspects During Running
,”
J. Biomech.
,
36
(
4
), pp.
569
575
.10.1016/S0021-9290(02)00428-1
You do not currently have access to this content.