Abstract

Computational human body models (HBMs) provide the ability to explore numerous candidate injury metrics ranging from local strain based criteria to global combined criteria such as the Tibia Index. Despite these efforts, there have been relatively few studies that focus on determining predicted injury risk from HBMs based on observed postmortem human subjects (PMHS) injury data. Additionally, HBMs provide an opportunity to construct risk curves using measures that are difficult or impossible to obtain experimentally. The Global Human Body Models Consortium (GHBMC) M50-O v 6.0 lower extremity was simulated in 181 different loading conditions based on previous PMHS tests in the underbody blast (UBB) environment and 43 different biomechanical metrics were output. The Brier Metric Score were used to determine the most appropriate metric for injury risk curve development. Using survival analysis, three different injury risk curves (IRC) were developed: “any injury,” “calcaneus injury,” and “tibia injury.” For each injury risk curve, the top three metrics selected using the Brier Metric Score were tested for significant covariates including boot use and posture. The best performing metric for the “any injury,” “calcaneus injury” and “tibia injury” cases were calcaneus strain, calcaneus force, and lower tibia force, respectively. For the six different injury risk curves where covariates were considered, the presence of the boot was found to be a significant covariate reducing injury risk in five out of six cases. Posture was significant for only one curve. The injury risk curves developed from this study can serve as a baseline for model injury prediction, personal protective equipment (PPE) evaluation, and can aid in larger scale testing and experimental protocols.

References

1.
Ramasamy
,
A.
,
Masouros
,
S. D.
,
Newell
,
N.
,
Hill
,
A. M.
,
Proud
,
W. G.
,
Brown
,
K. A.
,
Bull
,
A. M.
, and
Clasper
,
J. C.
,
2011
, “
In-Vehicle Extremity Injuries From Improvised Explosive Devices: Current and Future Foci
,”
Philos. Trans. R. Soc., B
,
366
(
1562
), pp.
160
170
.10.1098/rstb.2010.0219
2.
Singleton
,
J. A.
,
Gibb
,
I. E.
,
Hunt
,
N. C.
,
Bull
,
A. M.
, and
Clasper
,
J. C.
,
2013
, “
Identifying Future ‘Unexpected’ Survivors: A Retrospective Cohort Study of Fatal Injury Patterns in Victims of Improvised Explosive Devices
,”
BMJ Open
,
3
(
8
), p.
e003130
.10.1136/bmjopen-2013-003130
3.
Owens
,
B. D.
,
Kragh
,
J. F.
, Jr
,
Wenke
,
J. C.
,
Macaitis
,
J.
,
Wade
,
C. E.
, and
Holcomb
,
J. B.
,
2008
, “
Combat Wounds in Operation Iraqi Freedom and Operation Enduring Freedom
,”
J. Trauma Acute Care Surg.
,
64
(
2
), pp.
295
299
.10.1097/TA.0b013e318163b875
4.
Ramasamy
,
A.
,
Hill
,
A.-M.
, and
Clasper
,
J. C.
,
2009
, “
Improvised Explosive Devices: Pathophysiology, Injury Profiles and Current Medical Management
,”
BMJ Mil. Health
,
155
(
4
), pp.
265
272
.10.1136/jramc-155-04-05
5.
Chirvi
,
S.
,
Pintar
,
F.
,
Yoganandan
,
N.
,
Banerjee
,
A.
,
Schlick
,
M.
,
Curry
,
W.
, and
Voo
,
L.
,
2017
, “
Human Foot-Ankle Injuries and Associated Risk Curves From Under Body Blast Loading Conditions
,”
Stapp Car Crash J.
,
61
, pp.
157
173
.10.4271/2017-22-0006
6.
Danelson
,
K.
,
Watkins
,
L.
,
Hendricks
,
J.
,
Frounfelker
,
P.
,
Pizzolato-Heine
,
K.
,
Valentine
,
R.
, and
Loftis
,
K.
,
2018
, “
Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-Body Blast Environment
,”
SAE
Paper No. 2018-22-0014.10.4271/2018-22-0014
7.
Pintar
,
F. A.
,
Schlick
,
M. B.
,
Yoganandan
,
N.
,
Voo
,
L.
,
Merkle
,
A. C.
, and
Kleinberger
,
M.
,
2016
, “
Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia From Vertical Loading
,”
SAE
Paper No. 2016-22-0010.10.4271/2016-22-0010
8.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Schlick
,
M.
,
Humm
,
J. R.
,
Voo
,
L.
,
Merkle
,
A.
, and
Kleinberger
,
M.
,
2015
, “
Vertical Accelerator Device to Apply Loads Simulating Blast Environments in the Military to Human Surrogates
,”
J. Biomech.
,
48
(
12
), pp.
3534
3538
.10.1016/j.jbiomech.2015.06.008
9.
Bailey
,
A. M.
,
McMurry
,
T. L.
,
Poplin
,
G. S.
,
Salzar
,
R. S.
, and
Crandall
,
J. R.
,
2015
, “
Survival Model for Foot and Leg High Rate Axial Impact Injury Data
,”
Traffic Injury Prev.
,
16
(
sup2
), pp.
S96
S102
.10.1080/15389588.2015.1061185
10.
Ramasamy
,
A.
,
Hill
,
A. M.
,
Masouros
,
S.
,
Gibb
,
I.
,
Bull
,
A. M.
, and
Clasper
,
J. C.
,
2011
, “
Blast-Related Fracture Patterns: A Forensic Biomechanical Approach
,”
J. R. Soc. Interface
,
8
(
58
), pp.
689
698
.10.1098/rsif.2010.0476
11.
Bird
,
R.
,
Swinton
,
R.
, and
Krstic
,
A.
,
2001
, “
Protection of Lower Limbs Against Floor Impact in Army Vehicles Experiencing Landmine Explosion
,”
J. Battlefield Technol.
,
4
, pp.
8
12
.10.21203/rs.3.rs-1765590/v1
12.
Pietsch
,
H. A.
,
Bosch
,
K. E.
,
Weyland
,
D. R.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Salzar
,
R. S.
,
Smith
,
T. A.
, et al.,
2016
, “
Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-Body Blast Events
,”
Stapp Car Crash J.
,
60
, p.
199
.
13.
Scherer
,
R.
,
Felczak
,
C.
, and
Halstad
,
S.
,
2011
, “
Vehicle and Crash Dummy Response to an Underbelly Blast Event
,” RDECOM-TARDEC Unclassified Public Release.
14.
Gayzik
,
F.
,
Marcus
,
I.
,
Danelson
,
K.
,
Rupp
,
J.
,
Bass
,
C.
,
Yoganandan
,
N.
, and
Zhang
,
J.
,
2015
, “
A Point-Wise Normalization Method for Development of Biofidelity Response Corridors
,”
J. Biomech.
,
48
(
15
), pp.
4173
4177
.10.1016/j.jbiomech.2015.09.017
15.
Pietsch
,
H. A.
,
Bosch
,
K. E.
,
Weyland
,
D. R.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Salzar
,
R. S.
,
Smith
,
T. A.
, et al.,
2016
, “
Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-Body Blast Events
,”
SAE
Paper No. 2016-22-0009.10.4271/2016-22-0009
16.
Marie Bailey
,
A.
,
Christopher
,
J. J.
,
Salzar
,
R. S.
, and
Brozoski
,
F.
,
2015
, “
Comparison of Hybrid-III and Postmortem Human Surrogate Response to Simulated Underbody Blast Loading
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
051009
.10.1115/1.4029981
17.
Danelson
,
K. A.
,
Kemper
,
A. R.
,
Mason
,
M. J.
,
Tegtmeyer
,
M.
,
Bolte
, IV
,
J. H.
, and
Hardy
,
W. N.
,
2015
, “
Comparison of ATD to PMHS Response in the Under-Body Blast Environment
,”
Stapp Car Crash J.
,
59
, p.
445
.10.4271/2015-22-0017
18.
Barbat
,
S.
,
Fu
,
Y.
,
Zhan
,
Z.
,
Yang
,
R.-J.
, and
Gehre
,
C.
,
2013
, “
Objective Rating Metric for Dynamic Systems
,” 23rd International Technical Conference on the Enhanced Safety of Vehicles (
ESV
), Seoul, Republic Korea, May 27–30, Paper No. 13–0448.https://wwwesv.nhtsa.dot.gov/Proceedings/23/files/23ESV-000448.PDF
19.
Ott
,
K.
,
Drewry
,
D.
,
Luongo
,
M.
,
Andrist
,
J.
,
Armiger
,
R.
,
Titus
,
J.
, and
Demetropoulos
,
C.
,
2020
, “
Comparison of Human Surrogate Responses in Underbody Blast Loading Conditions
,”
ASME J. Biomech. Eng.
,
142
(
9
), p.
091010
.10.1115/1.4046638
20.
Funk
,
J. R.
,
Crandall
,
J. R.
,
Tourret
,
L. J.
,
MacMahon
,
C. B.
,
Bass
,
C. R.
,
Patrie
,
J. T.
,
Khaewpong
,
N.
, and
Eppinger
,
R. H.
,
2002
, “
The Axial Injury Tolerance of the Human Foot/Ankle Complex and the Effect of Achilles Tension
,”
ASME J. Biomech. Eng.
,
124
(
6
), pp.
750
757
.10.1115/1.1514675
21.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Gennarelli
,
T. A.
,
Seipel
,
R.
, and
Marks
,
R.
,
1999
, “
Biomechanical Tolerance of Calcaneal Fractures
,”
Proceedings of Annual Proceedings/Association for the Advancement of Automotive Medicine, Association for the Advancement of Automotive Medicine
, Barcelona, Spain, Oct., p.
345
.https://trid.trb.org/view/639786
22.
Crandall
,
J. R.
,
Kuppa
,
S. M.
,
Klopp
,
G.
,
Hall
,
G.
,
Pilkey
,
W. D.
, and
Hurwitz
,
S. R.
,
1998
, “
Injury Mechanisms and Criteria for the Human Foot and Ankle Under Axial Impacts to the Foot
,”
Int. J. Crashworthiness
,
3
(
2
), pp.
147
162
.10.1533/cras.1998.0068
23.
Henderson
,
K.
,
Bailey
,
A. M.
,
Christopher
,
J.
,
Brozoski
,
F.
, and
Salzar
,
R. S.
,
2013
, “
Biomechanical Response of the Lower Leg Under High Rate Loading
,”
Proceedings of IRCOBI Conference
, Sweden, Sept. 9, pp.
13
24
.http://www.ircobi.org/wordpress/downloads/irc13/pdf_files/24.pdf
24.
McKay
,
B. J.
, and
Bir
,
C. A.
,
2009
, “
Lower Extremity Injury Criteria for Evaluating Military Vehicle Occupant Injury in Underbelly Blast Events
,”
Stapp Car Crash J.
,
53
, p.
229
.10.4271/2009-22-0009
25.
Quenneville
,
C. E.
,
Fraser
,
G. S.
, and
Dunning
,
C. E.
,
2010
, “
Development of an Apparatus to Produce Fractures From Short-Duration High-Impulse Loading With an Application in the Lower Leg
,”
ASME J. Biomech. Eng.
,
132
(
1
), p.
014502
.10.1115/1.4000084
26.
Bass
,
C.
,
Folk
,
B.
,
Salzar
,
R.
,
Davis
,
M.
,
Harris
,
R.
,
Rountree
,
M. S.
,
Harcke
,
T.
, et al.,
2004
,
Development of a Test Methodology to Evaluate Mine Protective Footwear
,
Virginia University
,
Charlottesville, VA
.
27.
Gallenberger
,
K.
,
Yoganandan
,
N.
, and
Pintar
,
F.
,
2013
, “
Biomechanics of Foot/Ankle Trauma With Variable Energy Impacts
,”
Ann. Adv. Automot. Med.
,
57
, p.
123
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861818/
28.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Boynton
,
M.
,
Begeman
,
P.
,
Prasad
,
P.
,
Kuppa
,
S. M.
,
Morgan
,
R. M.
, and
Eppinger
,
R. H.
,
1996
, “
Dynamic Axial Tolerance of the Human Foot-Ankle Complex
,”
SAE Trans.
, 105, pp.
1887
1898
.10.4271/962426
29.
Yoganandan
,
N.
,
Arun
,
M. W.
,
Pintar
,
F. A.
, and
Szabo
,
A.
,
2014
, “
Optimized Lower Leg Injury Probability Curves From Postmortem Human Subject Tests Under Axial Impacts
,”
Traffic Injury Prev.
,
15
(
sup1
), pp.
S151
S156
.10.1080/15389588.2014.935357
30.
Kuppa
,
S.
,
Wang
,
J.
,
Haffner
,
M.
, and
Eppinger
,
R.
,
2001
, “
Lower Extremity Injuries and Associated Injury Criteria
,”
SAE
Paper No. 2001-06-0160.10.4271/2001-06-0160
31.
Decker
,
W.
,
Koya
,
B.
,
Pak
,
W.
,
Untaroiu
,
C. D.
, and
Gayzik
,
F. S.
,
2019
, “
Evaluation of Finite Element Human Body Models for Use in a Standardized Protocol for Pedestrian Safety Assessment
,”
Traffic Injury Prev.
,
20
(
sup2
), pp.
S32
S36
.10.1080/15389588.2019.1637518
32.
Meyer
,
F.
,
Humm
,
J.
,
Yoganandan
,
N.
,
Leszczynski
,
A.
,
Bourdet
,
N.
,
Deck
,
C.
, and
Willinger
,
R.
,
2021
, “
Development of a Detailed Human Neck Finite Element Model and Injury Risk Curves Under Lateral Impact
,”
J. Mech. Behav. Biomed. Mater.
,
116
, p.
104318
.10.1016/j.jmbbm.2021.104318
33.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Vavalle
,
N. A.
,
Rhyne
,
A. C.
, and
Stitzel
,
J. D.
,
2011
, “
Development of the Global Human Body Models Consortium Mid-Sized Male Full Body Model
,”
Proceedings of International Workshop on Human Subjects for Biomechanical Research
,
National Highway Traffic Safety Administration,
Washington, DC
, Nov., 39(12).https://wwwnrd.nhtsa.dot.gov/pdf/bio/proceedings/2011_39/39-12.pdf
34.
Comley
,
K.
, and
Fleck
,
N.
,
2012
, “
The Compressive Response of Porcine Adipose Tissue From Low to High Strain Rate
,”
Int. J. Impact Eng.
,
46
, pp.
1
10
.10.1016/j.ijimpeng.2011.12.009
35.
Katzenberger
,
M. J.
,
Albert
,
D. L.
,
Agnew
,
A. M.
, and
Kemper
,
A. R.
,
2020
, “
Effects of Sex, Age, and Two Loading Rates on the Tensile Material Properties of Human Rib Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
102
, p.
103410
.10.1016/j.jmbbm.2019.103410
36.
Butz
,
K.
,
Spurlock
,
C.
,
Roy
,
R.
,
Bell
,
C.
,
Barrett
,
P.
,
Ward
,
A.
,
Xiao
,
X.
, et al.,
2017
, “
Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading
,”
Stapp Car Crash J.
,
61
, pp.
175
209
.10.4271/2017-22-0007
37.
Hampton
,
C. E.
,
Kleinberger
,
M.
,
Schlick
,
M.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2020
, “
Analysis of Force Mitigation by Boots in Axial Impacts Using a Lower Leg Finite Element Model
,”
SAE
Paper No. 2019-22-0011.10.4271/2019-22-0011
38.
Rebelo
,
E. A.
,
Grigoriadis
,
G.
,
Carpanen
,
D.
,
Bull
,
A. M.
, and
Masouros
,
S. D.
,
2021
, “
An Experimentally Validated Finite Element Model of the Lower Limb to Investigate the Efficacy of Blast Mitigation Systems
,”
Front. Bioeng. Biotechnol.
,
9
, p.
410
.10.3389/fbioe.2021.665656
39.
Funk
,
J. R.
,
Tourret
,
L. J.
,
George
,
S. E.
, and
Crandall
,
J. R.
,
2000
, “
The Role of Axial Loading in Malleolar Fractures
,”
SAE Trans.
, 109, pp.
212
223
.https://www.jstor.org/stable/44686868
40.
Rudd
,
R.
,
Crandall
,
J.
,
Millington
,
S.
,
Hurwitz
,
S.
, and
Höglund
,
N.
,
2004
, “
Injury Tolerance and Response of the Ankle Joint in Dynamic Dorsiflexion
,”
SAE
Paper No. 2004-22-0001.10.4271/2004-22-0001
41.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C.
,
1988
, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: Kinematics
,”
ASME J. Biomech. Eng.
, 110(4), pp.
364
373
.10.1115/1.3108455
42.
Kerrigan
,
J. R.
,
Bhalla
,
K. S.
,
Madeley
,
N. J.
,
Funk
,
J. R.
,
Bose
,
D.
, and
Crandall
,
J. R.
,
2003
, “
Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria
,”
SAE
Paper No. 0148-7191.10.4271/0148-7191
43.
Untaroiu
,
C.
,
Darvish
,
K.
,
Crandall
,
J.
,
Deng
,
B.
, and
Wang
,
J.-T.
,
2005
, “
A Finite Element Model of the Lower Limb for Simulating Pedestrian Impacts
,”
SAE
Paper No. 2005-22-0008.10.4271/2005-22-0008
44.
Gabler
,
L. F.
,
Panzer
,
M. B.
, and
Salzar
,
R. S.
, “
High-Rate Mechanical Properties of Human Heel Pad for Simulation of a Blast Loading Condition
,”
Proceedings of the IRCOBI Conference
, Berlin, Germany, Sept. 12, pp.
796
808
.https://www.researchgate.net/publication/288095691_Highrate_mechanical_properties_of_human_heel_pad_for_simulation_of_a_blast_loading_condition
45.
Weaver
,
C.
,
Guleyupoglu
,
B.
,
Miller
,
A.
,
Kleinberger
,
M.
, and
Stitzel
,
J. D.
,
2021
, “
Pelvic Response of a Total Human Body Finite Element Model During Simulated Injurious Under Body Blast Impacts
,”
ASCE-ASME J. Risk Uncert. Eng. Sys., B
,
7
(
2
), p.
021004
.10.1115/1.4049105
46.
Hostetler
,
Z. S.
,
Aira
,
J.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2019
, “
A Computational Study of the Biomechanical Response of the Human Lower Extremity Subjected to High Rate Vertical Accelerative Loading
,”
Proceedings of IRCOBI Conference
,
Florence
, Italy, Sept., pp.
662
673
.
47.
Hostetler
,
Z. S.
,
2022
, “
Lower Extremity Validation of a Human Body Model for High Rate Axial Loading in the Underbody Blast Environment
,” Stapp Car Crash J.,
66
, No.
2022-22-0004
.https://www.sae.org/publications/technicalpapers/content/2022-22-0004/
48.
DeVogel
,
N.
,
Yoganandan
,
N.
,
Banerjee
,
A.
, and
Pintar
,
F.
,
2020
, “
Hierarchical Process Using Brier Score Metrics for Lower Leg Injury Risk Curves in Vertical Impact
,”
BMJ Mil. Health
,
166
(
5
), pp.
318
323
.10.1136/jramc-2018-001124
49.
Hostetler
,
Z. S.
,
Hsu
,
F.-C.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Banerjee
,
A.
,
Voo
,
L.
, and
Gayzik
,
F. S.
,
2021
, “
An Improved Method for Developing Injury Risk Curves Using the Brier Metric Score
,”
Ann. Biomed. Eng.
,
49
(
11
), pp.
3091
3098
.10.1007/s10439-020-02686-8
50.
Petitjean
,
A.
,
Trosseille
,
X.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2015
, “
Normalization and Scaling for Human Response Corridors and Development of Injury Risk Curves
,”
Accidental Injury
,
Springer
, New York, pp.
769
792
.
51.
Hostetler
,
Z. S.
,
Caffrey
,
J.
,
Aira
,
J.
, and
Gayzik
,
F. S.
,
2023
, “
Lower Extremity Validation of a Human Body Model for High Rate Axial Loading in the Underbody Blast Environment
,”
SAE
Paper No. 2022-22-0004.10.4271/2022-22-0004
52.
Baker
,
W. A.
,
Chowdhury
,
M. R.
, and
Untaroiu
,
C. D.
,
2018
, “
Validation of a Booted Finite Element Model of the WIAMan ATD Lower Limb in Component and Whole-Body Vertical Loading Impacts With an Assessment of the Boot Influence Model on Response
,”
Traffic Injury Prev.
,
19
(
5
), pp.
549
554
.10.1080/15389588.2018.1433829
53.
Hostetler
,
Z. S.
,
Aira
,
J.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
, “
A Computational Study of the Biomechanical Response of the Human Lower Extremity Subjected to High Rate Vertical Accelerative Loading
,”
Proceedings Conference Proceedings of International Research Council on Biomechanics of Injury
, Florence, Italy, Sept. 11, pp.
662
673
.
54.
Yoganandan
,
N.
,
Chirvi
,
S.
,
Voo
,
L.
,
DeVogel
,
N.
,
Pintar
,
F. A.
, and
Banerjee
,
A.
,
2017
, “
Foot-Ankle Complex Injury Risk Curves Using Calcaneus Bone Mineral Density Data
,”
J. Mech. Behav. Biomed. Mater.
,
72
, pp.
246
251
.10.1016/j.jmbbm.2017.05.010
55.
Yoganandan
,
N.
,
Chirvi
,
S.
,
Pintar
,
F. A.
,
Uppal
,
H.
,
Schlick
,
M.
,
Banerjee
,
A.
,
Voo
,
L.
, et al.,
2016
, “
Foot–Ankle Fractures and Injury Probability Curves From Post-Mortem Human Surrogate Tests
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2937
2947
.10.1007/s10439-016-1598-2
56.
Frazer
,
L.
, and
Nicolella
,
D. P.
,
2020
,
Human Response to High Rate Loading
,
Southwest Research Institute
,
San Antonio, TX
.
57.
Schoell
,
S. L.
,
Weaver
,
A. A.
,
Urban
,
J. E.
,
Jones
,
D. A.
,
Stitzel
,
J. D.
,
Hwang
,
E.
,
Reed
,
M. P.
, and
Rupp
,
J. D.
,
2015
, “
Development and Validation of an Older Occupant Finite Element Model of a Mid-Sized Male for Investigation of Age-Related Injury Risk
,”
Stapp Car Crash J.
,
59
, p.
359
.10.4271/2015-22-0014
58.
Umale
,
S.
,
Khandelwal
,
P.
,
Humm
,
J.
, and
Yoganandan
,
N.
,
2020
, “
Development and Validation of an Elderly Human Body Model for Frontal Impacts
,”
Traffic Injury Prev.
,
21
(
sup1
), pp.
S147
S149
.10.1080/15389588.2020.1829922
You do not currently have access to this content.