Abstract

The purpose of this computational study was to investigate the effects of neonate-focused clinical delivery maneuvers on brachial plexus (BP) during shoulder dystocia. During shoulder dystocia, the anterior shoulder of the neonate is obstructed behind the symphysis pubis of the maternal pelvis, postdelivery of the neonate's head. This is managed by a series of clinical delivery maneuvers. The goal of this study was to simulate these delivery maneuvers and study their effects on neonatal BP strain. Using madymo models of a maternal pelvis and a 90th-percentile neonate, various delivery maneuvers and positions were simulated including the lithotomy position alone of the maternal pelvis, delivery with the application of various suprapubic pressures (SPPs), neonate in an oblique position, and during posterior arm delivery maneuver. The resulting BP strain (%) along with the required maternal delivery force was reported in these independently simulated scenarios. The lithotomy position alone served as the baseline. Each of the successive maneuvers reported a decrease in the required delivery force and resulting neonatal BP strain. As the applied SPP force increased (three scenarios simulated), the required maternal delivery force and neonatal BP strain decreased. A further decrease in both delivery force and neonatal BP strain was observed in the oblique position, with the lowest delivery force and neonatal BP strain reported during the posterior arm delivery maneuver. Data obtained from the improved computational models in this study enhance our understanding of the effects of clinical maneuvers on neonatal BP strain during complicated birthing scenarios such as shoulder dystocia.

References

1.
Menticoglou
,
S.
,
2018
, “
Shoulder Dystocia: Incidence, Mechanisms, and Management Strategies
,”
Int. J. Womens Health
,
10
, pp.
723
732
.10.2147/IJWH.S175088
2.
Ouzounian
,
J. G.
,
2016
, “
Shoulder Dystocia: Incidence and Risk Factors
,”
Clin. Obstet. Gynecol.
,
59
(
4
), pp.
791
794
.10.1097/GRF.0000000000000227
3.
Williams
,
J. W.
,
Cunningham
,
F. G.
,
Leveno
,
K. J.
,
Bloom
,
S. L.
,
Spong
,
C. Y.
, and
Dashe
,
J. S.
,
2018
,
Williams Obstetrics
, 25th ed.,
McGraw-Hill Education Medical
,
New York
.
4.
Gherman
,
R. B.
,
Chauhan
,
S.
,
Ouzounian
,
J. G.
,
Lerner
,
H.
,
Gonik
,
B.
, and
Goodwin
,
T. M.
,
2006
, “
Shoulder Dystocia: The Unpreventable Obstetric Emergency With Empiric Management Guidelines
,”
Am. J. Obstet. Gynecol.
,
195
(
3
), pp.
657
672
.10.1016/j.ajog.2005.09.007
5.
MacKenzie
,
I. Z.
,
Shah
,
M.
,
Lean
,
K.
,
Dutton
,
S.
,
Newdick
,
H.
, and
Tucker
,
D. E.
,
2007
, “
Management of Shoulder Dystocia: Trends in Incidence and Maternal and Neonatal Morbidity
,”
Obstet. Gynecol.
,
110
(
5
), pp.
1059
1068
.10.1097/01.AOG.0000287615.35425.5c
6.
Dunbar
,
D. C.
,
Vilensky
,
J. A.
,
Suarez-Quian
,
C. A.
,
Shen
,
P. Y.
,
Metaizeau
,
J. P.
, and
Supakul
,
N.
,
2021
, “
Risk Factors for Neonatal Brachial Plexus Palsy Attributed to Anatomy, Physiology, and Evolution
,”
Clin. Anat.
,
34
(
6
), pp.
884
898
.10.1002/ca.23739
7.
Heinonen
,
K.
,
Saisto
,
T.
,
Gissler
,
M.
,
Kaijomaa
,
M.
, and
Sarvilinna
,
N.
,
2021
, “
Rising Trends in the Incidence of Shoulder Dystocia and Development of a Novel Shoulder Dystocia Risk Score Tool: A Nationwide Population-Based Study of 800 484 Finnish Deliveries
,”
Acta Obstet. Gynecol. Scand.
,
100
(
3
), pp.
538
547
.10.1111/aogs.14022
8.
Orozco
,
V.
,
Magee
,
R.
,
Balasubramanian
,
S.
, and
Singh
,
A.
,
2021
, “
A Systematic Review of the Tensile Biomechanical Properties of the Neonatal Brachial Plexus
,”
ASME J. Biomech. Eng.
,
143
(
11
), p.
110802
.10.1115/1.4051399
9.
Chauhan
,
S. P.
,
Blackwell
,
S. B.
, and
Ananth
,
C. V.
,
2014
, “
Neonatal Brachial Plexus Palsy: Incidence, Prevalence, and Temporal Trends
,”
Semin. Perinatol.
,
38
(
4
), pp.
210
218
.10.1053/j.semperi.2014.04.007
10.
Sandmire
,
H. F.
, and
DeMott
,
R. K.
,
2002
, “
Erb's Palsy Without Shoulder Dystocia
,”
Int. J. Gynaecol. Obstet.
,
78
(
3
), pp.
253
256
.10.1016/S0020-7292(02)00131-5
11.
Yang
,
L. J.
,
2014
, “
Neonatal Brachial Plexus Palsy–Management and Prognostic Factors
,”
Semin. Perinatol.
,
38
(
4
), pp.
222
234
.10.1053/j.semperi.2014.04.009
12.
Gurewitsch
,
E. D.
, and
Allen
,
R. H.
,
2005
, “
Fetal Manipulation for Management of Shoulder Dystocia
,”
Fetal Maternal Med. Rev.
,
17
(
3
), pp.
239
280
.10.1017/S096553950600180X
13.
Allen
,
R. H.
,
2007
, “
On the Mechanical Aspects of Shoulder Dystocia and Birth Injury
,”
Clin. Obstet. Gynecol.
,
50
(
3
), pp.
607
623
.10.1097/GRF.0b013e31811eb8e2
14.
Grimm
,
M. J.
,
2021
, “
Forces Involved With Labor and Delivery-A Biomechanical Perspective
,”
Ann. Biomed. Eng.
,
49
(
8
), pp.
1819
1835
.10.1007/s10439-020-02718-3
15.
Nocon
,
J. J.
,
McKenzie
,
D. K.
,
Thomas
,
L. J.
, and
Hansell
,
R. S.
,
1993
, “
Shoulder Dystocia: An Analysis of Risks and Obstetric Maneuvers
,”
Am. J. Obstet. Gynecol.
,
168
(
6
), pp.
1732
1739
.10.1016/0002-9378(93)90684-B
16.
Gherman
,
R. B.
,
Goodwin
,
T. M.
,
Souter
,
I.
,
Neumann
,
K.
,
Ouzounian
,
J. G.
, and
Paul
,
R. H.
,
1997
, “
The McRoberts' Maneuver for the Alleviation of Shoulder Dystocia: How Successful is It?
,”
Am. J. Obstet. Gynecol.
,
176
(
3
), pp.
656
661
.10.1016/S0002-9378(97)70565-9
17.
McFarland
,
M. B.
,
Langer
,
O.
,
Piper
,
J. M.
, and
Berkus
,
M. D.
,
1996
, “
Perinatal Outcome and the Type and Number of Maneuvers in Shoulder Dystocia
,”
Int. J. Gynaecol. Obstet.
,
55
(
3
), pp.
219
224
.10.1016/S0020-7292(96)02766-X
18.
Lok
,
Z. L.
,
Cheng
,
Y. K.
, and
Leung
,
T. Y.
,
2016
, “
Predictive Factors for the Success of McRoberts' Manoeuvre and Suprapubic Pressure in Relieving Shoulder Dystocia: A Cross-Sectional Study
,”
BMC Pregnancy Childbirth
,
16
(
1
), p.
334
.10.1186/s12884-016-1125-3
19.
Leung
,
T. Y.
,
Stuart
,
O.
,
Suen
,
S. S.
,
Sahota
,
D. S.
,
Lau
,
T. K.
, and
Lao
,
T. T.
,
2011
, “
Comparison of Perinatal Outcomes of Shoulder Dystocia Alleviated by Different Type and Sequence of Manoeuvres: A Retrospective Review
,”
BJOG
,
118
(
8
), pp.
985
990
.10.1111/j.1471-0528.2011.02968.x
20.
Singh
,
A.
,
Shaji
,
S.
,
Delivoria-Papadopoulos
,
M.
, and
Balasubramanian
,
S.
,
2018
, “
Biomechanical Responses of Neonatal Brachial Plexus to Mechanical Stretch
,”
J. Brachial Plex Peripher. Nerve INJ.
,
13
(
01
), pp.
e8
e14
.10.1055/s-0038-1669405
21.
DeSilva
,
J. M.
,
Laudicina
,
N. M.
,
Rosenberg
,
K. R.
, and
Trevathan
,
W. R.
,
2017
, “
Neonatal Shoulder Width Suggests a Semirotational, Oblique Birth Mechanism in Australopithecus Afarensis
,”
Anat. Rec. (Hoboken)
,
300
(
5
), pp.
890
899
.10.1002/ar.23573
22.
Peters
,
J. R.
,
Campbell
,
R. M.
, Jr.
, and
Balasubramanian
,
S.
,
2017
, “
Characterization of the Age-Dependent Shape of the Pediatric Thoracic Spine and Vertebrae Using Generalized Procrustes Analysis
,”
J. Biomech.
,
63
, pp.
32
40
.10.1016/j.jbiomech.2017.07.030
23.
Zhang
,
N.
,
Gonik
,
B.
, and
Grimm
,
M. J.
,
2003
, “
Development of a MADYMO Model to Investigate Fetal Brachial Plexus Injury During Complicated Vagial Delivery
,”
Summer Bioengineering Conference
, Key Biscayne, FL, June
25
29
.
24.
Centers for Disease Control and Prevention
,
2022
, “
Data Table of Infant Head Circumference-for-Age Charts
,” Centers for Disease Control and Prevention, National Center for Health Statistics, Atlanta, GA, accessed May 14, 2022, https://www.cdc.gov/growthcharts/html_charts/hcageinf.htm
25.
Verspyck
,
E.
,
Goffinet
,
F.
,
Hellot
,
M. F.
,
Milliez
,
J.
, and
Marpeau
,
L.
,
1999
, “
Newborn Shoulder Width: A Prospective Study of 2222 Consecutive Measurements
,”
Br. J. Obstet. Gynaecol.
,
106
(
6
), pp.
589
593
.10.1111/j.1471-0528.1999.tb08329.x
26.
Grimm
,
M. J.
,
Costello
,
R. E.
, and
Gonik
,
B.
,
2010
, “
Effect of Clinician-Applied Maneuvers on Brachial Plexus Stretch During a Shoulder Dystocia Event: Investigation Using a Computer Simulation Model
,”
Am. J. Obstet. Gynecol.
,
203
(
4
), p.
339
.10.1016/j.ajog.2010.05.002
27.
Leinberry
,
C. F.
, and
Wehbé
,
M. A.
,
2004
, “
Brachial Plexus Anatomy
,”
Hand Clin.
,
20
(
1
), pp.
1
5
.10.1016/S0749-0712(03)00088-X
28.
Rydevik
,
B. L.
,
Kwan
,
M. K.
,
Myers
,
R. R.
,
Brown
,
R. A.
,
Triggs
,
K. J.
,
Woo
,
S. L.
, and
Garfin
,
S. R.
,
1990
, “
An In Vitro Mechanical and Histological Study of Acute Stretching on Rabbit Tibial Nerve
,”
J. Orthop. Res.
,
8
(
5
), pp.
694
701
.10.1002/jor.1100080511
29.
Gonik
,
B.
,
Zhang
,
N.
, and
Grimm
,
M. J.
,
2003
, “
Prediction of Brachial Plexus Stretching During Shoulder Dystocia Using a Computer Simulation Model
,”
Am. J. Obstet. Gynecol.
,
189
(
4
), pp.
1168
1172
.10.1067/S0002-9378(03)00578-7
30.
Gonik
,
B.
,
Zhang
,
N.
, and
Grimm
,
M. J.
,
2003
, “
Defining Forces That Are Associated With Shoulder Dystocia: The Use of a Mathematic Dynamic Computer Model
,”
Am. J. Obstet. Gynecol.
,
188
(
4
), pp.
1068
1072
.10.1067/mob.2003.250
31.
Siemens,
2017
, “
MADYMO Theory Manual
,”
Design, Simulation and Virtual Testing
, Siemens, Portland, OR.
32.
Gherman
,
R. B.
,
Ouzounian
,
J. G.
, and
Goodwin
,
T. M.
,
1998
, “
Obstetric Maneuvers for Shoulder Dystocia and Associated Fetal Morbidity
,”
Am. J. Obstet. Gynecol.
,
178
(
6
), pp.
1126
1130
.10.1016/S0002-9378(98)70312-6
33.
Penney
,
D. S.
, and
Perlis
,
D. W.
,
1992
, “
Shoulder Dystocia: When to Use Suprapubic or Fundal Pressure
,”
MCN Am. J. Matern. Child Nurs.
,
17
(
1
), pp.
34
36
.10.1097/00005721-199201000-00012
34.
Mazzanti
,
G. A.
,
1959
, “
Delivery of the Anterior Shoulder; a Neglected Art
,”
Obstet. Gynecol.
,
13
(
5
), pp.
603
607
.https://pubmed.ncbi.nlm.nih.gov/13644872/
35.
Hoffman
,
M. K.
,
Bailit
,
J. L.
,
Branch
,
D. W.
,
Burkman
,
R. T.
,
Van Veldhusien
,
P.
,
Lu
,
L.
, et al.
2011
, “
A Comparison of Obstetric Maneuvers for the Acute Management of Shoulder Dystocia
,”
Obstet. Gynecol.
,
117
(
6
), pp.
1272
1278
.10.1097/AOG.0b013e31821a12c9
36.
Singh
,
A.
,
2017
, “
Extent of Impaired Axoplasmic Transport and Neurofilament Compaction in Traumatically Injured Axon at Various Strains and Strain Rates
,”
Brain INJ
,
31
(
10
), pp.
1387
1395
.10.1080/02699052.2017.1321781
37.
Singh
,
A.
,
Magee
,
R.
, and
Balasubramanian
,
S.
,
2019
, “
Methods for In Vivo Biomechanical Testing on Brachial Plexus in Neonatal Piglets
,”
J. Vis. Exp.
, (
154
).10.3791/59860
38.
Singh
,
A.
,
Kallakuri
,
S.
,
Chen
,
C.
, and
Cavanaugh
,
J. M.
,
2009
, “
Structural and Functional Changes in Nerve Roots Due to Tension at Various Strains and Strain Rates: An in-Vivo Study
,”
J. Neurotrauma
,
26
(
4
), pp.
627
640
.10.1089/neu.2008.0621
39.
Singh
,
A.
,
Ferry
,
D.
, and
Balasubramanian
,
S.
,
2019
, “
Efficacy of Clinical Simulation-Based Training in Biomedical Engineering Education
,”
ASME J. Biomech. Eng.
,
141
(
12
), p.
121011
.10.1115/1.4045343
40.
Singh
,
A.
,
2017
, “
A New Approach to Teaching Biomechanics Through Active, Adaptive, and Experiential Learning
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071001
.10.1115/1.4036604
41.
Singh
,
A.
,
Ferry
,
D.
,
Ramakrishnan
,
A.
, and
Balasubramanian
,
S.
,
2020
, “
Using Virtual Reality in Biomedical Engineering Education
,”
ASME J. Biomech. Eng.
,
142
(
11
), p.
111013
.10.1115/1.4048005
42.
Balasubramanian
,
S.
,
D'Andrea
,
C. R.
,
Viraraghavan
,
G.
, and
Cahill
,
P. J.
,
2022
, “
Development of a Finite Element Model of the Pediatric Thoracic and Lumbar Spine, Ribcage, and Pelvis With Orthotropic Region-Specific Vertebral Growth
,”
ASME J. Biomech. Eng.
,
144
(
10
), p.
101007
.10.1115/1.4054410
43.
Balasubramanian
,
S.
,
Peters
,
J. R.
,
Robinson
,
L. F.
,
Singh
,
A.
, and
Kent
,
R. W.
,
2016
, “
Thoracic Spine Morphology of a Pseudo-Biped Animal Model (Kangaroo) and Comparisons With Human and Quadruped Animals
,”
Eur. Spine J.
,
25
(
12
), pp.
4140
4154
.10.1007/s00586-016-4776-x
44.
Peters
,
J. R.
,
Chandrasekaran
,
C.
,
Robinson
,
L. F.
,
Servaes
,
S. E.
,
Campbell
,
R. M.
, Jr.
, and
Balasubramanian
,
S.
,
2015
, “
Age-and Gender-Related Changes in Pediatric Thoracic Vertebral Morphology
,”
Spine J.
,
15
(
5
), pp.
1000
1020
.10.1016/j.spinee.2015.01.016
45.
Hadagali
,
P.
,
Peters
,
J. R.
, and
Balasubramanian
,
S.
,
2018
, “
Morphing the Feature-Based Multi-Blocks of Normative/Healthy Vertebral Geometries to Scoliosis Vertebral Geometries: Development of Personalized Finite Element Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
4
), pp.
297
324
.10.1080/10255842.2018.1448391
46.
Peters
,
J. R.
,
Servaes
,
S. E.
,
Cahill
,
P. J.
, and
Balasubramanian
,
S.
,
2021
, “
Morphology and Growth of the Pediatric Lumbar Vertebrae
,”
Spine J.
,
21
(
4
), pp.
682
697
.10.1016/j.spinee.2020.10.029
You do not currently have access to this content.