Abstract

Many methods to computationally predict red blood cell damage have been introduced, and among these are Lagrangian methods that track the cells along their pathlines. Such methods typically do not explicitly include cell–cell interactions. Due to the high volume fraction of red blood cells (RBCs) in blood, these interactions could impact cell mechanics and thus the amount of damage caused by the flow. To investigate this question, cell-resolved simulations of red blood cells in shear flow were performed for multiple interacting cells, as well as for single cells in unbounded flow at an effective viscosity. Simulations run without adjusting the bulk viscosity produced larger errors unilaterally and were not considered further for comparison. We show that a periodic box containing at least 8 cells and a spherical harmonic of degree larger than 10 are necessary to produce converged higher-order statistics. The maximum difference between the single-cell and multiple-cell cases in terms of peak strain was 3.7%. To achieve this, one must use the whole blood viscosity and average over multiple cell orientations when adopting a single-cell simulation approach. The differences between the models in terms of average strain were slightly larger (maximum difference of 6.9%). However, given the accuracy of the single-cell approach in predicting the maximum strain, which is useful in hemolysis prediction, and its computational cost that is orders of magnitude less than the multiple-cell approach, one may use it as an affordable cell-resolved approach for hemolysis prediction.

References

1.
Yu
,
H.
,
Engel
,
S.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2017
, “
A Review of Hemolysis Prediction Models for Computational Fluid Dynamics
,”
Artif. Organs
,
41
(
7
), pp.
603
621
.10.1111/aor.12871
2.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses–In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.10.1177/039139889001300507
3.
Sharp
,
M. K.
, and
Mohammad
,
S. F.
,
1998
, “
Scaling of Hemolysis in Needles and Catheters
,”
Ann. Biomed. Eng.
,
26
(
5
), pp.
788
797
.10.1114/1.65
4.
Arora
,
D.
,
Behr
,
M.
, and
Pasquali
,
M.
,
2004
, “
A Tensor-Based Measure for Estimating Blood Damage
,”
Artif. Organs
,
28
(
11
), pp.
1002
1015
.10.1111/j.1525-1594.2004.00072.x
5.
Arvand
,
A.
,
Hormes
,
M.
, and
Reul
,
H.
,
2005
, “
A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump
,”
Artif. Organs
,
29
(
7
), pp.
531
540
.10.1111/j.1525-1594.2005.29089.x
6.
Ezzeldin
,
H. M.
,
de Tullio
,
M. D.
,
Vanella
,
M.
,
Solares
,
S. D.
, and
Balaras
,
E.
,
2015
, “
A Strain-Based Model for Mechanical Hemolysis Based on a Coarse-Grained Red Blood Cell Model
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1398
1409
.10.1007/s10439-015-1273-z
7.
Sohrabi
,
S.
, and
Liu
,
Y.
,
2017
, “
A Cellular Model of Shear-Induced Hemolysis
,”
Artif. Organs
,
41
(
9
), pp.
E80
E91
.10.1111/aor.12832
8.
Nikfar
,
M.
,
Razizadeh
,
M.
,
Paul
,
R.
, and
Liu
,
Y.
,
2020
, “
Multiscale Modeling of Hemolysis During Microfiltration
,”
Microfluid. Nanofluid.
,
24
(
5
), p.
33
.10.1007/s10404-020-02337-3
9.
Garon
,
A.
, and
Farinas
,
M.-I.
,
2004
, “
Fast Three-Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
,
28
(
11
), pp.
1016
1025
.10.1111/j.1525-1594.2004.00026.x
10.
Zhang
,
J.
,
Gellman
,
B.
,
Koert
,
A.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2006
, “
Computational and Experimental Evaluation of the Fluid Dynamics and Hemocompatibility of the CentriMag Blood Pump
,”
Artif. Organs
,
30
(
3
), pp.
168
177
.10.1111/j.1525-1594.2006.00203.x
11.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
D'Avenio
,
G.
,
Di Benedetto
,
G.
, and
Barbaro
,
V.
,
2004
, “
The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies
,”
Artif. Organs
,
28
(
5
), pp.
467
475
.10.1111/j.1525-1594.2004.00015.x
12.
Goubergrits
,
L.
, and
Affeld
,
K.
,
2004
, “
Numerical Estimation of Blood Damage in Artificial Organs
,”
Artif. Organs
,
28
(
5
), pp.
499
507
.10.1111/j.1525-1594.2004.07265.x
13.
Tamagawa
,
M.
,
Akamatsu
,
T.
, and
Saitoh
,
K.
,
1996
, “
Prediction of Hemolysis in Turbulent Shear Orifice Flow
,”
Artif. Organs
,
20
(
5
), pp.
553
559
.10.1111/j.1525-1594.1996.tb04479.x
14.
Ozturk
,
M.
,
Papavassiliou
,
D. V.
, and
O'Rear
,
E. A.
,
2016
, “
An Approach for Assessing Turbulent Flow Damage to Blood in Medical Devices
,”
ASME J. Biomech. Eng.
,
139
(
1
), p.
011008
.10.1115/1.4034992
15.
Goubergrits
,
L.
,
Osman
,
J.
,
Mevert
,
R.
,
Kertzscher
,
U.
,
Pöthkow
,
K.
, and
Hege
,
H.-C.
,
2016
, “
Turbulence in Blood Damage Modeling
,”
Int. J. Artif. Organs
,
39
(
4
), pp.
160
165
.10.5301/ijao.5000476
16.
Balogh
,
P.
, and
Bagchi
,
P.
,
2017
, “
Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks
,”
Biophys. J.
,
113
(
12
), pp.
2815
2826
.10.1016/j.bpj.2017.10.020
17.
Lu
,
L.
,
Morse
,
M. J.
,
Rahimian
,
A.
,
Stadler
,
G.
, and
Zorin
,
D.
,
2019
, “
Scalable Simulation of Realistic Volume Fraction Red Blood Cell Flows Through Vascular Networks
,”
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
, SC '19, Association for Computing Machinery, Denver, CO, Nov. 17–22, pp.
1
30
.https://cims.nyu.edu/gcl/papers/2019-Scalable-Simulation.pdf
18.
Peters
,
A.
,
Melchionna
,
S.
,
Kaxiras
,
E.
,
Lätt
,
J.
,
Sircar
,
J.
,
Bernaschi
,
M.
,
Bison
,
M.
, and
Succi
,
S.
,
2010
, “
Multiscale Simulation of Cardiovascular Flows on the IBM Bluegene/P: Full Heart-Circulation System at Red-Blood Cell Resolution
,”
SC '10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis
,
New Orleans, LA
, Nov. 13–19, pp.
1
10
.10.1109/SC.2010.33
19.
Rydquist
,
G.
, and
Esmaily
,
M.
,
2022
, “
A Cell-Resolved, Lagrangian Solver for Modeling Red Blood Cell Dynamics in Macroscale Flows
,”
J. Comput. Phys.
,
461
, p.
111204
.10.1016/j.jcp.2022.111204
20.
Faghih
,
M. M.
, and
Sharp
,
M. K.
,
2019
, “
Modeling and Prediction of Flow-Induced Hemolysis: A Review
,”
Biomech. Model. Mechanobiol.
,
18
(
4
), pp.
845
881
.10.1007/s10237-019-01137-1
21.
Chien
,
S.
,
1970
, “
Shear Dependence of Effective Cell Volume as a Determinant of Blood Viscosity
,”
Science
,
168
(
3934
), pp.
977
979
.10.1126/science.168.3934.977
22.
Fedosov
,
D. A.
,
Pan
,
W.
,
Caswell
,
B.
,
Gompper
,
G.
, and
Karniadakis
,
G. E.
,
2011
, “
Predicting Human Blood Viscosity in Silico
,”
Proc. Natl. Acad. Sci.
,
108
(
29
), pp.
11772
11777
.10.1073/pnas.1101210108
23.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
,
1972
, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.10.1016/S0006-3495(72)86085-5
24.
Porcaro
,
C.
, and
Saeedipour
,
M.
,
2023
, “
Hemolysis Prediction in Bio-Microfluidic Applications Using Resolved CFD-DEM Simulations
,”
Comput. Methods Programs Biomed.
,
231
, p.
107400
.10.1016/j.cmpb.2023.107400
25.
Faghih
,
M. M.
, and
Sharp
,
M. K.
,
2020
, “
Deformation of Human Red Blood Cells in Extensional Flow Through a Hyperbolic Contraction
,”
Biomech. Model. Mechanobiol.
,
19
(
1
), pp.
251
261
.10.1007/s10237-019-01208-3
26.
Lee
,
S. S.
,
Yim
,
Y.
,
Ahn
,
K. H.
, and
Lee
,
S. J.
,
2009
, “
Extensional Flow-Based Assessment of Red Blood Cell Deformability Using Hyperbolic Converging Microchannel
,”
Biomed. Microdev.
,
11
(
5
), pp.
1021
1027
.10.1007/s10544-009-9319-3
27.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
R. P.
, and
Chien
,
S.
,
1973
, “
Strain Energy Function of Red Blood Cell Membranes
,”
Biophys. J.
,
13
(
3
), pp.
245
264
.10.1016/S0006-3495(73)85983-1
28.
Helfrich
,
W.
,
1973
, “
Elastic Properties of Lipid Bilayers: Theory and Possible Experiments
,”
Z. Naturforsch. C
,
28
(
11–12
), pp.
693
703
.10.1515/znc-1973-11-1209
29.
Barthès-Biesel
,
D.
,
Diaz
,
A.
, and
Dhenin
,
E.
,
2002
, “
Effect of Constitutive Laws for Two-Dimensional Membranes on Flow-Induced Capsule Deformation
,”
J. Fluid Mech.
,
460
, pp.
211
222
.10.1017/S0022112002008352
30.
Pozrikidis
,
C.
,
2003
, “
Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells
,”
Ann. Biomed. Eng.
,
31
(
10
), pp.
1194
1205
.10.1114/1.1617985
31.
Zhao
,
H.
,
Isfahani
,
A. H.
,
Olson
,
L. N.
, and
Freund
,
J. B.
,
2010
, “
A Spectral Boundary Integral Method for Flowing Blood Cells
,”
J. Comput. Phys.
,
229
(
10
), pp.
3726
3744
.10.1016/j.jcp.2010.01.024
32.
Sinha
,
K.
, and
Graham
,
M. D.
,
2015
, “
Dynamics of a Single Red Blood Cell in Simple Shear Flow
,”
Phys. Rev. E
,
92
(
4
), p.
042710
.10.1103/PhysRevE.92.042710
33.
Pozrikidis
,
C.
,
1992
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(Cambridge Texts in Applied Mathematics),
Cambridge University Press
, Cambridge, UK.
34.
Pozrikidis
,
C.
,
1996
, “
Computation of Periodic Green's Functions of Stokes Flow
,”
J. Eng. Math.
,
30
(
1–2
), pp.
79
96
.10.1007/BF00118824
35.
Lindbo
,
D.
, and
Tornberg
,
A.-K.
,
2010
, “
Spectrally Accurate Fast Summation for Periodic Stokes Potentials
,”
J. Comput. Phys.
,
229
(
23
), pp.
8994
9010
.10.1016/j.jcp.2010.08.026
36.
Marin
,
O.
,
2012
, “
Boundary Integral Methods for Stokes Flow: Quadrature Techniques and Fast Ewald Methods
,”
Ph.D. thesis
,
KTH Royal Institute of Technology, Stockholm, Sweden
.https://www.csc.kth.se/~oanam/uploads/Oana/Phd_final.pdf
37.
Af Klinteberg
,
L.
, and
Tornberg
,
A.-K.
,
2014
, “
Fast Ewald Summation for Stokesian Particle Suspensions
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
669
698
.10.1002/fld.3953
38.
af Klinteberg
,
L.
,
Shamshirgar
,
D. S.
, and
Tornberg
,
A.-K.
,
2017
, “
Fast Ewald Summation for Free-Space Stokes Potentials
,”
Res. Math. Sci.
,
4
(
1
), p.
1
.10.1186/s40687-016-0092-7
39.
Deserno
,
M.
, and
Holm
,
C.
,
1998
, “
How to Mesh Up Ewald Sums. I. A Theoretical and Numerical Comparison of Various Particle Mesh Routines
,”
J. Chem. Phys.
,
109
(
18
), pp.
7678
7693
.10.1063/1.477414
40.
Johnston
,
P. R.
, and
Elliott
,
D.
,
2005
, “
A Sinh Transformation for Evaluating Nearly Singular Boundary Element Integrals
,”
Int. J. Numer. Methods Eng.
,
62
(
4
), pp.
564
578
.10.1002/nme.1208
41.
Liu
,
Y.
,
Zhang
,
L.
,
Wang
,
X.
, and
Liu
,
W. K.
,
2004
, “
Coupling of Navier–Stokes Equations With Protein Molecular Dynamics and Its Application to Hemodynamics
,”
Int. J. Numer. Methods Fluids
,
46
(
12
), pp.
1237
1252
.10.1002/fld.798
42.
Wang
,
T.
,
Pan
,
T.-W.
,
Xing
,
Z. W.
, and
Glowinski
,
R.
,
2009
, “
Numerical Simulation of Rheology of Red Blood Cell Rouleaux in Microchannels
,”
Phys. Rev. E
,
79
(
4
), p.
041916
.10.1103/PhysRevE.79.041916
43.
Li
,
H.
,
Ye
,
T.
, and
Lam
,
K. Y.
,
2014
, “
Computational Analysis of Dynamic Interaction of Two Red Blood Cells in a Capillary
,”
Cell Biochem. Biophys.
,
69
(
3
), pp.
673
680
.10.1007/s12013-014-9852-4
44.
Xiao
,
L.
,
Liu
,
Y.
,
Chen
,
S.
, and
Fu
,
B.
,
2016
, “
Simulation of Deformation and Aggregation of Two Red Blood Cells in a Stenosed Microvessel by Dissipative Particle Dynamics
,”
Cell Biochem. Biophys.
,
74
(
4
), pp.
513
525
.10.1007/s12013-016-0765-2
45.
Chien
,
S.
,
Usami
,
S.
,
Dellenback
,
R. J.
, and
Gregersen
,
M. I.
,
1967
, “
Blood Viscosity: Influence of Erythrocyte Deformation
,”
Science
,
157
(
3790
), pp.
827
829
.10.1126/science.157.3790.827
46.
Javadi
,
E.
,
Deng
,
Y.
,
Karniadakis
,
G. E.
, and
Jamali
,
S.
,
2021
, “
In Silico Biophysics and Hemorheology of Blood Hyperviscosity Syndrome
,”
Biophys. J.
,
120
(
13
), pp.
2723
2733
.10.1016/j.bpj.2021.05.013
47.
Zinchenko
,
A. Z.
, and
Davis
,
R. H.
,
2002
, “
Shear Flow of Highly Concentrated Emulsions of Deformable Drops by Numerical Simulations
,”
J. Fluid Mech.
,
455
, pp.
21
61
.10.1017/S0022112001007042
48.
Batchelor
,
G. K.
,
1970
, “
The Stress System in a Suspension of Force-Free Particles
,”
J. Fluid Mech.
,
41
(
3
), pp.
545
570
.10.1017/S0022112070000745
49.
Tran-Son-Tay
,
R.
,
Sutera
,
S. P.
,
Zahalak
,
G. I.
, and
Rao
,
P. R.
,
1987
, “
Membrane Stress and Internal Pressure in a Red Blood Cell Freely Suspended in a Shear Flow
,”
Biophys. J.
,
51
(
6
), pp.
915
924
.10.1016/S0006-3495(87)83419-7
50.
Lu
,
H.
, and
Peng
,
Z.
,
2019
, “
Boundary Integral Simulations of a Red Blood Cell Squeezing Through a Submicron Slit Under Prescribed Inlet and Outlet Pressures
,”
Phys. Fluids
,
31
(
3
), p.
031902
.10.1063/1.5081057
51.
Zhu
,
Q.
, and
Bi
,
X.
,
2022
, “
Dynamics of Erythrocytes in Oscillatory Shear Flows: Effects of S/V Ratio
,”
Soft Matter
,
18
(
5
), pp.
964
974
.10.1039/D1SM01430G
52.
Xu
,
Z.
,
Chen
,
C.
,
Hao
,
P.
,
He
,
F.
, and
Zhang
,
X.
,
2023
, “
Cell-Scale Hemolysis Evaluation of Intervenient Ventricular Assist Device Based on Dissipative Particle Dynamics
,”
Front. Physiol.
,
14
, p.
1181423
.10.3389/fphys.2023.1181423
53.
Sutera
,
S. P.
, and
Mehrjardi
,
M. H.
,
1975
, “
Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow
,”
Biophys. J.
,
15
(
1
), pp.
1
10
.10.1016/S0006-3495(75)85787-0
You do not currently have access to this content.