Abstract

We compared the ability of seven machine learning algorithms to use wearable inertial measurement unit (IMU) data to identify the severe knee loading cycles known to induce microdamage associated with anterior cruciate ligament rupture. Sixteen cadaveric knee specimens, dissected free of skin and muscle, were mounted in a rig simulating standardized jump landings. One IMU was located above and the other below the knee, the applied three-dimensional action and reaction loads were measured via six-axis load cells, and the three-dimensional knee kinematics were also recorded by a laboratory motion capture system. Machine learning algorithms were used to predict the knee moments and the tibial and femur vertical forces; 13 knees were utilized for training each model, while three were used for testing its accuracy (i.e., normalized root-mean-square error) and reliability (Bland–Altman limits of agreement). The results showed the models predicted force and knee moment values with acceptable levels of error and, although several models exhibited some form of bias, acceptable reliability. Further research will be needed to determine whether these types of models can be modified to attenuate the inevitable in vivo soft tissue motion artifact associated with highly dynamic activities like jump landings.

References

1.
Alghamdi
,
W.
,
Alzahrani
,
A.
,
Alsuwaydi
,
A.
,
Alzahrani
,
A.
,
Albaqqar
,
O.
,
Fatani
,
M.
, and
Alaidarous
,
H.
,
2017
, “
Prevalence of Cruciate Logaments Injury Among Physical Education Students of Umm Al-Qura University and the Relation Between the Dominant Body Side and Ligament Injury Side in Non-Contact Injury Type
,”
Am. J. Med. Med. Sci.
,
7
(
1
), pp.
14
19
.10.5923/j.ajmms.20170701.04
2.
Saeed
,
I. O.
,
2018
, “
MRI Evaluation for Post-Traumatic Knee Joint Injuries
,”
J. Nursing Health Sci.
,
7
(
2
), pp.
48
51
.10.9790/1959-0702074851
3.
Hewett
,
T. E.
,
Ford
,
K. R.
, and
Myer
,
G. D.
,
2006
, “
Anterior Cruciate Ligament Injuries in Female Athletes: Part 2, A Meta-Analysis of Neuromuscular Interventions Aimed at Injury Prevention
,”
Am. J. Sports Med.
,
34
(
3
), pp.
490
498
.10.1177/0363546505282619
4.
Hewett
,
T. E.
,
Myer
,
G. D.
, and
Ford
,
K. R.
,
2006
, “
Anterior Cruciate Ligament Injuries in Female Athletes: Part 1, Mechanisms and Risk Factors
,”
Am. J. Sports Med.
,
34
(
2
), pp.
299
311
.10.1177/0363546505284183
5.
Myer
,
G. D.
,
Paterno
,
M. V.
,
Ford
,
K. R.
,
Quatman
,
C. E.
, and
Hewett
,
T. E.
,
2006
, “
Rehabilitation After Anterior Cruciate Ligament Reconstruction: Criteria-Based Progression Through the Return-to-Sport Phase
,”
J. Orthop. Sports Phys. Ther.
,
36
(
6
), pp.
385
402
.10.2519/jospt.2006.2222
6.
Paterno
,
M. V.
,
Schmitt
,
L. C.
,
Ford
,
K. R.
,
Rauh
,
M. J.
,
Myer
,
G. D.
,
Huang
,
B.
, and
Hewett
,
T. E.
,
2010
, “
Biomechanical Measures During Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury After Anterior Cruciate Ligament Reconstruction and Return to Sport
,”
Am. J. Sports Med.
,
38
(
10
), pp.
1968
1978
.10.1177/0363546510376053
7.
Wojtys
,
E. M.
,
Beaulieu
,
M. L.
, and
Ashton-Miller
,
J. A.
,
2016
, “
New Perspectives on ACL Injury: On the Role of Repetitive Sub-Maximal Knee Loading in Causing ACL Fatigue Failure
,”
J. Orthop. Res.
,
34
(
12
), pp.
2059
2068
.10.1002/jor.23441
8.
Zitnay
,
J. L.
,
Jung
,
G. S.
,
Lin
,
A. H.
,
Qin
,
Z.
,
Li
,
Y.
,
Yu
,
S. M.
,
Buehler
,
M. J.
, and
Weiss
,
J. A.
,
2020
, “
Accumulation of Collagen Molecular Unfolding is the Mechanism of Cyclic Fatigue Damage and Failure in Collagenous Tissues
,”
Sci. Adv.
,
6
(
35
), p.
eaba2795
.10.1126/sciadv.aba2795
9.
Kim
,
J.
,
?Baek
,
S.
,
Schlecht
,
S. H.
,
Beaulieu
,
M. L.
,
Bussau
,
L.
,
Chen
,
J.
, et al.,
2022
, “
Anterior Cruciate Ligament Microfatigue Damage Detected by Collagen Autofluorescence In Situ
,”
J. Exp. Orthop.
,
9
(
1
), p.
74
.10.1186/s40634-022-00507-6
10.
Putera
,
K. H.
,
Kim
,
J.
,
Baek
,
S. Y.
,
Schlecht
,
S. H.
,
Beaulieu
,
M. L.
,
Haritos
,
V.
,
Arruda
,
E. M.
,
Ashton-Miller
,
J. A.
,
Wojtys
,
E. M.
, and
Banaszak Holl
,
M. M.
,
2023
, “
Fatigue-Driven Compliance Increase and Collagen Unravelling in Mechanically Tested Anterior Cruciate Ligament
,”
Commun. Biol.
,
6
(
1
), p.
564
.10.1038/s42003-023-04948-2
11.
Griffin
,
L. Y.
,
Agel
,
J.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Dick
,
R. W.
,
Garrett
,
W. E.
,
Garrick
,
J. G.
, et al.,
2000
, “
Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies
,”
J. Am. Acad. Orthop. Surg.
,
8
(
3
), pp.
141
150
.10.5435/00124635-200005000-00001
12.
Olsen
,
O.-E.
,
Myklebust
,
G.
,
Engebretsen
,
L.
, and
Bahr
,
R.
,
2004
, “
Injury Mechanisms for Anterior Cruciate Ligament Injuries in Team Handball: A Systematic Video Analysis
,”
Am. J. Sports Med.
,
32
(
4
), pp.
1002
1012
.10.1177/0363546503261724
13.
Hollis
,
J. M.
,
Takai
,
S.
,
Adams
,
D. J.
,
Horibe
,
S.
, and
Woo
,
S. L.-Y.
,
1991
, “
The Effects of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (ACL): A Kinematic Study
,”
ASME J. Biomech. Eng.
,
113
(
2
), pp.
208
214
.10.1115/1.2891236
14.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Shepard
,
M. F.
,
Finerman
,
G. A. M.
, and
Slauterbeck
,
J. L.
,
1995
, “
Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces
,”
J. Orthop. Res.
,
13
(
6
), pp.
930
935
.10.1002/jor.1100130618
15.
Yu
,
B.
, and
Garrett
,
W. E.
,
2007
, “
Mechanisms of Non-Contact ACL Injuries
,”
Br. J. Sports Med.
,
41
(
Suppl 1
), pp.
i47
i51
.10.1136/bjsm.2007.037192
16.
Shin
,
C. S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
,
2011
, “
Valgus Plus Internal Rotation Moments Increase Anterior Cruciate Ligament Strain More Than Either Alone
,”
Med. Sci. Sports Exer.
,
43
(
8
), pp.
1484
1491
.10.1249/MSS.0b013e31820f8395
17.
Anderson
,
C. J.
,
Ziegler
,
C. G.
,
Wijdicks
,
C. A.
,
Engebretsen
,
L.
, and
LaPrade
,
R. F.
,
2012
, “
Arthroscopically Pertinent Anatomy of the Anterolateral and Posteromedial Bundles of the Posterior Cruciate Ligament
,”
J. Bone Jt. Surg. Am.
,
94
(
21
), pp.
1936
1945
.10.2106/JBJS.K.01710
18.
Arif
,
M.
, and
Kattan
,
A.
,
2015
, “
Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body
,”
PLoS One
,
10
(
7
), p.
e0130851
.10.1371/journal.pone.0130851
19.
Cutti
,
A. G.
,
Ferrari
,
A.
,
Garofalo
,
P.
,
Raggi
,
M.
,
Cappello
,
A.
, and
Ferrari
,
A.
,
2010
, “
Outwalk': A Protocol for Clinical Gait Analysis Based on Inertial and Magnetic Sensors
,”
Med. Biol. Eng. Comput.
,
48
(
1
), pp.
17
25
.10.1007/s11517-009-0545-x
20.
Favre
,
J.
,
Crevoisier
,
X.
,
Jolles
,
B. M.
, and
Aminian
,
K.
,
2010
, “
Evaluation of a Mixed Approach Combining Stationary and Wearable Systems to Monitor Gait Over Long Distance
,”
J. Biomech.
,
43
(
11
), pp.
2196
2202
.10.1016/j.jbiomech.2010.03.041
21.
Ferrari
,
A.
,
Cutti
,
A. G.
,
Garofalo
,
P.
,
Raggi
,
M.
,
Heijboer
,
M.
,
Cappello
,
A.
, and
Davalli
,
A.
,
2010
, “
First In Vivo Assessment of “Outwalk”: A Novel Protocol for Clinical Gait Analysis Based on Inertial and Magnetic Sensors
,”
Med. Biol. Eng. Comput.
,
48
(
1
), pp.
1
15
.10.1007/s11517-009-0544-y
22.
Lin
,
J. F.
, and
Kulić
,
D.
,
2012
, “
Human Pose Recovery Using Wireless Inertial Measurement Units
,”
Physiol. Meas.
,
33
(
12
), pp.
2099
2115
.10.1088/0967-3334/33/12/2099
23.
Picerno
,
P.
,
Cereatti
,
A.
, and
Cappozzo
,
A.
,
2008
, “
Joint Kinematics Estimate Using Wearable Inertial and Magnetic Sensing Modules
,”
Gait Posture
,
28
(
4
), pp.
588
595
.10.1016/j.gaitpost.2008.04.003
24.
Elvin
,
N. G.
,
Elvin
,
A. A.
, and
Arnoczky
,
S. P.
,
2007
, “
Correlation Between Ground Reaction Force and Tibial Acceleration in Vertical Jumping
,”
J. Appl. Biomech.
,
23
(
3
), pp.
180
189
.10.1123/jab.23.3.180
25.
Gurchiek
,
R. D.
,
McGinnis
,
R. S.
,
Needle
,
A. R.
,
McBride
,
J. M.
, and
van Werkhoven
,
H.
,
2017
, “
The Use of a Single Inertial Sensor to Estimate 3-Dimensional Ground Reaction Force During Accelerative Running Tasks
,”
J. Biomech.
,
61
, pp.
263
268
.10.1016/j.jbiomech.2017.07.035
26.
Meyer
,
U.
,
Ernst
,
D.
,
Schott
,
S.
,
Riera
,
C.
,
Hattendorf
,
J.
,
Romkes
,
J.
,
Granacher
,
U.
,
Göpfert
,
B.
, and
Kriemler
,
S.
,
2015
, “
Validation of Two Accelerometers to Determine Mechanical Loading of Physical Activities in Children
,”
J. Sports Sci.
,
33
(
16
), pp.
1702
1709
.10.1080/02640414.2015.1004638
27.
Lee
,
M.
, and
Park
,
S.
,
2020
, “
Estimation of Three-Dimensional Lower Limb Kinetics Data During Walking Using Machine Learning From a Single IMU Attached to the Sacrum
,”
Sensors (Basel)
,
20
(
21
), p.
6277
.10.3390/s20216277
28.
Alcantara
,
R. S.
, Edwards, W. B., Millet, G. Y., Grabowski, A. M.,
2022
, “
Predicting Continuous Ground Reaction Forces From Accelerometers During Uphill and Downhill Running: A Recurrent Neural Network Solution
,”
PeerJ
, 10, p. e12752.10.7717/peerj.12752
29.
Tedesco
,
S.
,
Alfieri
,
D.
,
Perez-Valero
,
E.
,
Komaris
,
D-S.
,
Jordan
,
L.
,
Belcastro
,
M.
,
Barton
,
J.
,
Hennessy
,
L.
, and
O'Flynn
,
B.
,
2021
, “
A Wearable System for the Estimation of Performance-Related Metrics During Running and Jumping Tasks.
,”
Appl. Sci.
,
11
(
11
), p.
5258
.10.3390/app11115258
30.
Liang
,
W.
,
Wang
,
F.
,
Fan
,
A.
,
Zhao
,
W.
,
Yao
,
W.
, and
Yang
,
P.
,
2023
, “
Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation
,”
Sensors (Basel)
,
23
(
9
), p.
4229
.10.3390/s23094229
31.
McLean
,
S. G.
,
Lipfert
,
S. W.
, and
van den Bogert
,
A. J.
,
2004
, “
Effect of Gender and Defensive Opponent on the Biomechanics of Sidestep Cutting
,”
Med. Sci. Sports Exer.
,
36
(
6
), pp.
1008
1016
.10.1249/01.MSS.0000128180.51443.83
32.
Sigward
,
S. M.
, and
Powers
,
C. M.
,
2007
, “
Loading Characteristics of Females Exhibiting Excessive Valgus Moments During Cutting
,”
Clin. Biomech. (Bristol, Avon)
,
22
(
7
), pp.
827
833
.10.1016/j.clinbiomech.2007.04.003
33.
Karatsidis
,
A.
, Jung, M. K., Schepers, M., Bellusci, G., De Zee, M., Veltink, P. H., and Andersen, M. S.,
2018
, “
Predicting Kinetics Using Musculoskeletal Modeling and Inertial Motion Capture
,”
arxiv:1801.01668
.10.48550/arXiv.1801.01668
34.
Lipps
,
D. B.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2013
, “
Anterior Cruciate Ligament Fatigue Failures in Knees Subjected to Repeated Simulated Pivot Landings
,”
Am. J. Sports Med.
,
41
(
5
), pp.
1058
1066
.10.1177/0363546513477836
35.
Lipps
,
D. B.
,
Oh
,
Y. K.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2014
, “
Effect of Increased Quadriceps Tensile Stiffness on Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing
,”
J. Orthop. Res.
,
32
(
3
), pp.
423
430
.10.1002/jor.22531
36.
Yu
,
B.
,
Gabriel
,
D.
,
Noble
,
L.
, and
An
,
K.-N.
,
1999
, “
Estimate of the Optimum Cutoff Frequency for the Butterworth Low-Pass Digital Filter
,”
J. Appl. Biomech.
,
15
(
3
), pp.
318
329
.10.1123/jab.15.3.318
37.
Ajdaroski
,
M.
, Ashton-Miller, J. A., Baek, S. Y., and Shahshahani, P. M., et al.,
2021
, “
Testing a Quaternion Conversion Method to Determine Human 3D Tibiofemoral Angles During an In Vitro Simulated Jump Landing
,”
ASME J. Biomech. Eng.
, 144(4), p.
041002
.10.1115/1.4052496
38.
Bates
,
N. A.
,
Schilaty
,
N. D.
,
Nagelli
,
C. V.
,
Krych
,
A. J.
, and
Hewett
,
T. E.
,
2019
, “
Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial Collateral Ligament Strain During Simulated Landings and Noncontact Tears
,”
Am. J. Sports Med.
,
47
(
8
), pp.
1844
1853
.10.1177/0363546519850165
39.
Yu
,
B.
,
Lin
,
C. F.
, and
Garrett
,
W. E.
,
2006
, “
Lower Extremity Biomechanics During the Landing of a Stop-Jump Task
,”
Clin. Biomech. (Bristol, Avon)
,
21
(
3
), pp.
297
305
.10.1016/j.clinbiomech.2005.11.003
40.
Thiel
,
D. V.
,
Shepherd
,
J.
,
Espinosa
,
H. G.
,
Kenny
,
M.
,
Fischer
,
K.
,
Worsey
,
M.
,
Matsuo
,
A.
, and
Wada
,
T.
,
2018
, “
Predicting Ground Reaction Forces in Sprint Running Using a Shank Mounted Inertial Measurement Unit
,”
Proceedings
,
2
(
6
), p.
199
.10.3390/proceedings2060199
41.
Neugebauer
,
J. M.
,
Hawkins
,
D. A.
, and
Beckett
,
L.
,
2012
, “
Estimating Youth Locomotion Ground Reaction Forces Using an Accelerometer-Based Activity Monitor
,”
PLoS One
,
7
(
10
), p.
e48182
.10.1371/journal.pone.0048182
42.
Wong
,
T.-T.
,
2015
, “
Performance Evaluation of Classification Algorithms by K-Fold and Leave-One-Out Cross Validation
,”
Pattern Recogn.
,
48
(
9
), pp.
2839
2846
.10.1016/j.patcog.2015.03.009
43.
Levine
,
J. W.
,
Kiapour
,
A. M.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Goel
,
V. K.
,
Hewett
,
T. E.
, and
Demetropoulos
,
C. K.
,
2013
, “
Clinically Relevant Injury Patterns After an Anterior Cruciate Ligament Injury Provide Insight Into Injury Mechanisms
,”
Am. J. Sports Med.
,
41
(
2
), pp.
385
395
.10.1177/0363546512465167
44.
Kiapour
,
A. M.
,
Demetropoulos
,
C. K.
,
Kiapour
,
A.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Goel
,
V. K.
, and
Hewett
,
T. E.
,
2016
, “
Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism
,”
Am. J. Sports Med.
,
44
(
8
), pp.
2087
2096
.10.1177/0363546516640499
45.
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Cochrane
,
J. L.
, and
Ackland
,
T. R.
,
2001
, “
External Loading of the Knee Joint During Running and Cutting Maneuvers
,”
Med. Sci. Sports Exer.
,
33
(
7
), pp.
1168
1175
.10.1097/00005768-200107000-00014
46.
McLean
,
S. G.
,
Huang
,
X.
,
Su
,
A.
, and
van den Bogert
,
A. J.
,
2004
, “
Sagittal Plane Biomechanics Cannot Injure the ACL During Sidestep Cutting
,”
Clin. Biomech. (Bristol, Avon)
,
19
(
8
), pp.
828
838
.10.1016/j.clinbiomech.2004.06.006
47.
Konrath
,
J.
,
Karatsidis
,
A.
,
Schepers
,
H.
,
Bellusci
,
G.
,
de Zee
,
M.
, and
Andersen
,
M.
,
2019
, “
Estimation of the Knee Adduction Moment and Joint Contact Force During Daily Living Activities Using Inertial Motion Capture
,”
Sensors (Basel)
,
19
(
7
), p.
1681
.10.3390/s19071681
48.
Donisi
,
L.
,
Cesarelli
,
G.
,
Capodaglio
,
E.
,
Panigazzi
,
M.
,
D'Addio
,
G.
,
Cesarelli
,
M.
, and
Amato
,
F.
,
2022
, “
A Logistic Regression Model for Biomechanical Risk Classification in Lifting Tasks
,”
Diagnostics (Basel)
,
12
(
11
), p.
2624
.10.3390/diagnostics12112624
49.
Brandt
,
M.
,
Madeleine
,
P.
,
Samani
,
A.
,
Jakobsen
,
M. D.
,
Skals
,
S.
,
Vinstrup
,
J.
, and
Andersen
,
L. L.
,
2018
, “
Accuracy of Identification of Low or High Risk Lifting During Standardised Lifting Situations
,”
Ergonomics
,
61
(
5
), pp.
710
719
.10.1080/00140139.2017.1408857
You do not currently have access to this content.