Abstract

This research introduces an adaptive control algorithm designed to determine gait phase in real-time using an inertial measurement unit (IMU) affixed to the shank. Focusing on detecting specific gait events, primarily initial contact (IC) and toe-off (TO), the algorithm utilizes dynamic thresholds and ratios that facilitate accurate event determination adaptively across a range of walking speeds. Built-in safety checks further ensure precision and minimize false detections. We validated the algorithm with eight participants walking at varying speeds. The algorithm demonstrated promising results in detecting IC and TO events with mean lead of 8.95 ms and 4.42 ms and detection success rate of 100% and 99.72%, respectively. These results are consistent with benchmarks from established algorithms (Hanlon and Anderson, 2009, “Real-Time Gait Event Detection Using Wearable Sensors,” Gait Posture, 30(4), pp. 523–527; Maqbool et al., 2017, “A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation,” IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc., 25(9), pp. 1500–1509). Moreover, the algorithm's self-adaptive nature ensures it can be used in scenarios of varying movement, offering a promising solution for real-time gait phase detection.

References

1.
Hanlon
,
M.
, and
Anderson
,
R.
,
2009
, “
Real-Time Gait Event Detection Using Wearable Sensors
,”
Gait Posture
,
30
(
4
), pp.
523
527
.10.1016/j.gaitpost.2009.07.128
2.
Taborri
,
J.
,
Palermo
,
E.
,
Rossi
,
S.
, and
Cappa
,
P.
,
2016
, “
Gait Partitioning Methods: A Systematic Review
,”
Sensors
,
16
(
1
), p.
66
.10.3390/s16010066
3.
Tong
,
K.
, and
Granat
,
M. H.
,
1999
, “
A Practical Gait Analysis System Using Gyroscopes
,”
Med. Eng. Phys.
,
21
(
2
), pp.
87
94
.10.1016/S1350-4533(99)00030-2
4.
Mayagoitia
,
R. E.
,
Nene
,
A. V.
, and
Veltink
,
P. H.
,
2002
, “
Accelerometer and Rate Gyroscope Measurement of Kinematics: An Inexpensive Alternative to Optical Motion Analysis Systems
,”
J. Biomech.
,
35
(
4
), pp.
537
542
.10.1016/S0021-9290(01)00231-7
5.
Ye
,
J.
,
Wu
,
H.
,
Wu
,
L.
,
Long
,
J.
,
Zhang
,
Y.
,
Chen
,
G.
,
Wang
,
C.
,
Luo
,
X.
,
Hou
,
Q.
, and
Xu
,
Y.
,
2020
, “
An Adaptive Method for Gait Event Detection of Gait Rehabilitation Robots
,”
Front. Neurorob.
,
14
, p.
38
.10.3389/fnbot.2020.00038
6.
Sinclair
,
J.
,
Hobbs
,
S.
,
Protheroe
,
L.
,
Edmundson
,
C.
, and
Greenhalgh
,
A.
,
2013
, “
Determination of Gait Events Using an Externally Mounted Shank Accelerometer
,”
J. Appl. Biomech.
,
29
(
1
), pp.
118
122
.10.1123/jab.29.1.118
7.
Pacini Panebianco
,
G.
,
Bisi
,
M. C.
,
Stagni
,
R.
, and
Fantozzi
,
S.
,
2018
, “
Analysis of the Performance of 17 Algorithms From a Systematic Review: Influence of Sensor Position, Analysed Variable and Computational Approach in Gait Timing Estimation From IMU Measurements
,”
Gait Posture
,
66
, pp.
76
82
.10.1016/j.gaitpost.2018.08.025
8.
Catalfamo
,
P.
,
Ghoussayni
,
S.
, and
Ewins
,
D.
,
2010
, “
Gait Event Detection on Level Ground and Incline Walking Using a Rate Gyroscope
,”
Sensors
,
10
(
6
), pp.
5683
5702
.10.3390/s100605683
9.
Aminian
,
K.
,
Najafi
,
B.
,
Büla
,
C.
,
Leyvraz
,
P.-F.
, and
Robert
,
P.
,
2002
, “
Spatio-Temporal Parameters of Gait Measured by an Ambulatory System Using Miniature Gyroscopes
,”
J. Biomech.
,
35
(
5
), pp.
689
699
.10.1016/S0021-9290(02)00008-8
10.
Shin
,
S. H.
, and
Park
,
C. G.
,
2011
, “
Adaptive Step Length Estimation Algorithm Using Optimal Parameters and Movement Status Awareness
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1064
1071
.10.1016/j.medengphy.2011.04.009
11.
Maqbool
,
H. F.
,
Husman
,
M. A. B.
,
Awad
,
M. I.
,
Abouhossein
,
A.
,
Iqbal
,
N.
, and
Dehghani-Sanij
,
A. A.
,
2017
, “
A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc.
,
25
(
9
), pp.
1500
1509
.10.1109/TNSRE.2016.2636367
12.
Kim
,
S. C.
,
Kim
,
J. Y.
,
Lee
,
H. N.
,
Lee
,
H. H.
,
Kwon
,
J. H.
,
Kim
,
N. B.
,
Kim
,
M. J.
,
Hwang
,
J. H.
, and
Han
,
G. C.
,
2014
, “
A Quantitative Analysis of Gait Patterns in Vestibular Neuritis Patients Using Gyroscope Sensor and a Continuous Walking Protocol
,”
J. NeuroEng. Rehabil.
,
11
(
1
), p.
58
.10.1186/1743-0003-11-58
13.
Moon
,
Y.
,
McGinnis
,
R. S.
,
Seagers
,
K.
,
Motl
,
R. W.
,
Sheth
,
N.
,
Wright
,
J. A.
,
Ghaffari
,
R.
, and
Sosnoff
,
J. J.
,
2017
, “
Monitoring Gait in Multiple Sclerosis With Novel Wearable Motion Sensors
,”
PLoS One
,
12
(
2
), p.
e0171346
.10.1371/journal.pone.0171346
You do not currently have access to this content.