Abstract

Blunt force trauma remains a serious threat to many populations and is commonly seen in motor vehicle crashes, sports, and military environments. Effective design of helmets and protective armor should consider biomechanical tolerances of organs in which they intend to protect and require accurate measurements of deformation as a primary injury metric during impact. To overcome challenges found in velocity and displacement measurements during blunt impact using an integrated accelerometer and two-dimensional (2D) high-speed video, three-dimensional (3D) digital image correlation (DIC) measurements were taken and compared to the accepted techniques. A semispherical impactor was launched at impact velocities from 14 to 20 m/s into synthetic ballistic gelatin to simulate blunt impacts observed in behind armor blunt trauma (BABT), falls, and sports impacts. Repeated measures Analysis of Variance resulted in no significant differences in maximum displacement (p =0.10), time of maximum displacement (p =0.21), impact velocity (p =0.13), and rebound velocity (p =0.21) between methods. The 3D-DIC measurements demonstrated equal or improved percent difference and low root-mean-square deviation compared to the accepted measurement techniques. Therefore, 3D-DIC may be utilized in BABT and other blunt impact applications for accurate 3D kinematic measurements, especially when an accelerometer or 2D lateral camera analysis is impractical or susceptible to error.

References

1.
Simon
,
L. V.
,
Lopez
,
R. A.
, and
King
,
K. C.
,
2023
,
Blunt Force Trauma
,
StatPearls Publishing
,
Treasure Island, FL
.
2.
Lichtenberger
,
J. P.
,
Kim
,
A. M.
,
Fisher
,
D.
,
Tatum
,
P. S.
,
Neubauer
,
B.
,
Peterson
,
P. G.
, and
Carter
,
B. W.
,
2018
, “
Imaging of Combat-Related Thoracic Trauma - Blunt Trauma and Blast Lung Injury
,”
Mil Med.
,
183
(
3–4
), pp.
E89
E96
.10.1093/milmed/usx033
3.
Carr
,
D. J.
,
Horsfall
,
I.
, and
Malbon
,
C.
,
2016
, “
Is Behind Armour Blunt Trauma a Real Threat to Users of Body Armour? A Systematic Review
,”
J. R. Army Med. Corps.
,
162
(
1
), pp.
8
11
.10.1136/jramc-2013-000161
4.
Cannon
,
L.
,
2001
, “
Behind Armour Blunt Trauma–an Emerging Problem
,”
J R Army Med. Corps.
,
147
(
1
), pp.
87
96
.10.1136/jramc-147-01-09
5.
Cronin
,
D. S.
,
Bustamante
,
M. C.
,
Barker
,
J.
,
Singh
,
D.
,
Rafaels
,
K. A.
, and
Bir
,
C.
,
2021
, “
Assessment of Thorax Finite Element Model Response for Behind Armor Blunt Trauma Impact Loading Using an Epidemiological Database
,”
ASME J. Biomech. Eng.
,
143
(
3
), p. 031007.10.1115/1.4048644
6.
Rafaels
,
K. A.
,
Cutcliffe
,
H. C.
,
Salzar
,
R. S.
,
Davis
,
M.
,
Boggess
,
B.
,
Bush
,
B.
,
Harris
,
R.
,
Rountree
,
M. S.
,
Sanderson
,
E.
,
Campman
,
S.
,
Koch
,
S.
, and
Dale Bass
,
C. R.
,
2015
, “
Injuries of the Head From Backface Deformation of Ballistic Protective Helmets Under Ballistic Impact
,”
J. Forensic Sci.
,
60
(
1
), pp.
219
225
.10.1111/1556-4029.12570
7.
Bschleipfer
,
T.
,
Kallieris
,
D.
,
Hauck
,
E. W.
,
Weidner
,
W.
, and
Pust
,
R. A.
,
2002
, “
Blunt Renal Trauma: Biomechanics and Origination of Renal Lesions
,”
Eur. Urol.
,
42
(
6
), pp.
614
621
.10.1016/S0302-2838(02)00437-2
8.
Bir
,
C.
,
Lance
,
R.
,
Stojsih-Sherman
,
S.
, and
Cavanaugh
,
J.
,
2017
, “
Behind Armor Blunt Trauma: Recreation of Field Cases for the Assessment of Backface Signature Testing
,”
30th International Symposium on Ballistics
,
DEStech Publications, Inc
.,
Lancaster, PA
, Sept. 11–15.10.12783/ballistics2017/16912
9.
Seifert
,
J.
,
Koser
,
J.
,
Shah
,
A.
,
Frazer
,
L.
,
Yoganandan
,
N.
,
Shender
,
B.
,
Sheehy
,
J.
,
Paskoff
,
G.
,
Bentley
,
T.
,
Nicolella
,
D. P.
, and
Stemper
,
B. D.
,
2023
, “
Response of Thoraco-Abdominal Tissue in High-Rate Compression
,”
ASME J. Biomech. Eng.
,
145
(
3
), p.
031004
.10.1115/1.4056062
10.
Allison
,
M. A.
,
Kang
,
Y. S.
,
Maltese
,
M. R.
,
Bolte
,
J. H.
, and
Arbogast
,
K. B.
,
2015
, “
Measurement of Hybrid III Head Impact Kinematics Using an Accelerometer and Gyroscope System in Ice Hockey Helmets
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1896
1906
.10.1007/s10439-014-1197-z
11.
Bartsch
,
A. J.
,
Benzel
,
E. C.
,
Miele
,
V. J.
,
Morr
,
D. R.
, and
Prakash
,
V.
,
2012
, “
Boxing and Mixed Martial Arts: Preliminary Traumatic Neuromechanical Injury Risk Analyses From Laboratory Impact Dosage Data. Laboratory Investigation
,”
J. Neurosurg.
,
116
(
5
), pp.
1070
1080
.10.3171/2011.12.JNS111478
12.
McIntosh
,
A. S.
, and
Patton
,
D. A.
,
2015
, “
Boxing Headguard Performance in Punch Machine Tests
,”
Br. J. Sports Med.
,
49
(
17
), pp.
1108
1112
.10.1136/bjsports-2015-095094
13.
Lewis
,
L. M.
,
Naunheim
,
R.
,
Standeven
,
J.
,
Lauryssen
,
C.
,
Richter
,
C.
, and
Jeffords
,
B.
,
2001
, “
Do Football Helmets Reduce Acceleration of Impact in Blunt Head Injuries?
,”
Acad. Emerg. Med.
,
8
(
6
), pp.
604
609
.10.1111/j.1553-2712.2001.tb00171.x
14.
McIntosh
,
A. S.
, and
Janda
,
D.
,
2003
, “
Evaluation of Cricket Helmet Performance and Comparison With Baseball and Ice Hockey Helmets
,”
Br. J. Sports Med.
,
37
(
4
), pp.
325
330
.10.1136/bjsm.37.4.325
15.
Kurt
,
M.
,
Laksari
,
K.
,
Kuo
,
C.
,
Grant
,
G. A.
, and
Camarillo
,
D. B.
,
2017
, “
Modeling and Optimization of Airbag Helmets for Preventing Head Injuries in Bicycling
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
1148
1160
.10.1007/s10439-016-1732-1
16.
Bailly
,
N.
,
Llari
,
M.
,
Donnadieu
,
T.
,
Masson
,
C.
, and
Arnoux
,
P. J.
,
2017
, “
Head Impact in a Snowboarding Accident
,”
Scand. J. Med. Sci. Sports
,
27
(
9
), pp.
964
974
.10.1111/sms.12699
17.
Kettner
,
M.
,
Ramsthaler
,
F.
,
Potente
,
S.
,
Bockenheimer
,
A.
,
Schmidt
,
P. H.
, and
Schrodt
,
M.
,
2014
, “
Blunt Force Impact to the Head Using a Teeball Bat: Systematic Comparison of Physical and Finite Element Modeling
,”
Forensic Sci. Med. Pathol.
,
10
(
4
), pp.
513
517
.10.1007/s12024-014-9586-z
18.
Neice
,
R. J.
,
Lurski
,
A. J.
,
Bartsch
,
A. J.
,
Plaisted
,
T. A.
,
Lowry
,
D. S.
, and
Wetzel
,
E. D.
,
2021
, “
An Experimental Platform Generating Simulated Blunt Impacts to the Head Due to Rearward Falls
,”
Ann. Biomed. Eng.
,
49
(
10
), pp.
2886
2900
.10.1007/s10439-021-02809-9
19.
Bass
,
C. R.
,
Salzar
,
R. S.
,
Lucas
,
S. R.
,
Davis
,
M.
,
Donnellan
,
L.
,
Folk
,
B.
,
Sanderson
,
E.
, and
Waclawik
,
S.
,
2006
, “
Injury Risk in Behind Armor Blunt Thoracic Trauma
,”
Int. J. Occup. Saf. Ergon.
,
12
(
4
), pp.
429
442
.10.1080/10803548.2006.11076702
20.
Park
,
J. L.
,
Chi
,
Y. S.
,
Hahn
,
M. H.
, and
Kang
,
T. J.
,
2012
, “
Kinetic Dissipation in Ballistic Tests of Soft Body Armors
,”
Exp. Mech.
,
52
(
8
), pp.
1239
1250
.10.1007/s11340-011-9583-z
21.
U.S. Department of Justice, Office of Justice Programs
,
2008
, Ballistic Resistance of Body Armor NIJ Standard-0101.06, National Institute of Justice, No. 223054.
22.
Liu
,
L.
,
Fan
,
Y.
, and
Li
,
W.
,
2014
, “
Viscoelastic Shock Wave in Ballistic Gelatin Behind Soft Body Armor
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
199
207
.10.1016/j.jmbbm.2014.02.011
23.
Wen
,
Y.
,
Xu
,
C.
,
Wang
,
S.
, and
Batra
,
R. C.
,
2015
, “
Analysis of Behind the Armor Ballistic Trauma
,”
J. Mech. Behav. Biomed. Mater.
,
45
, pp.
11
21
.10.1016/j.jmbbm.2015.01.010
24.
Luo
,
S.
,
Xu
,
C.
,
Chen
,
A.
, and
Zhang
,
X.
,
2016
, “
Experimental Investigation of the Response of Gelatine Behind the Soft Body Armor
,”
Forensic Sci. Int.
,
266
, pp.
8
13
.10.1016/j.forsciint.2016.04.019
25.
Op 't Eynde
,
J.
,
Eckersley
,
C. P.
,
Salzar
,
R. S.
,
Stemper
,
B. D.
,
Shender
,
B. S.
,
Bentley
,
T. B.
, and
Bass
,
C. R.
,
2021
, “
Behind Armor Blunt Trauma (BABT) Indenter Simulating High-Velocity Impacts From Rifle Rounds on Hard Body Armor
,”
The Ohio State University Injury Biomechanics Symposium
, Virtual, May 24–25.https://ibrc.osu.edu/wp-content/uploads/2021/05/Opteynde-2021-IBS.pdf
26.
Blenkinsopp
,
R.
,
Roberts
,
J.
,
Harland
,
A.
,
Sherratt
,
P.
,
Smith
,
P.
, and
Lucas
,
T.
,
2019
, “
A Method for Calibrating a Digital Image Correlation System for Full-Field Strain Measurements During Large Deformations
,”
Appl. Sci. (Switzerland)
,
9
(
14
), p.
2828
.10.3390/app9142828
27.
Wen
,
Y. K.
,
Zheng
,
H.
,
Zhang
,
J. B.
,
Yan
,
W. M.
,
Cui
,
G. Y.
, and
Xu
,
C.
,
2020
, “
Analysis of Dynamic Back Face Deformation of a Body Armor Impact by a Rifle Bullet Using 3D-DIC
,”
J. Phys.: Conf. Series
, 1507(3), p. 032051.10.1088/1742-6596/1507/3/032051
28.
Hisley
,
D. M.
,
Gurganus
,
J.
, and
Drysdale
,
A.
,
2012
, “
Experimental Methodology Using Digital Image Correlation to Assess Ballistic Helmet Blunt Trauma
,” Army Research Laboratory Technical Report, No. ADA540021.
29.
Ellis
,
C. L.
, and
Hazell
,
P.
,
2020
, “
Visual Methods to Assess Strain Fields in Armour Materials Subjected to Dynamic Deformation-A Review
,”
Appl. Sci. (Switzerland)
,
10
(
8
), p.
2644
.10.3390/app10082644
30.
LeSueur
,
J.
,
Hampton
,
C.
,
Koser
,
J.
,
Chirvi
,
S.
, and
Pintar
,
F. A.
,
2022
, “
Surface Wave Analysis of the Skin for Penetrating and Non-Penetrating Projectile Impact in Porcine Legs
,”
Forensic Sci. Med. Pathol.
,
19
(
1
), pp.
34
43
.10.1007/s12024-022-00521-1
31.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Kumaresan
,
S.
,
Maiman
,
D.
, and
Hargarten
,
S. W.
,
1997
, “
Dynamic Analysis of Penetrating Trauma
,”
J. Trauma: Injury, Infection, Crit. Care
,
42
(
2
), pp.
266
272
.10.1097/00005373-199702000-00014
32.
Carl Zeiss AG,
2015
, “
GOM Correlate Professional V8 SR1 Manual Basic Inspection-3D Testing
,” Carl Zeiss AG, Braunschweig, Germany.
You do not currently have access to this content.