Abstract

Modeling the lumbar facet capsular ligament's (FCL) mechanical behavior under various physiological motions has often been a challenge due to limited knowledge about the on-joint in situ ligament state arising from attachment to the bone or other internal loads. Building on prior work, this study presents an enhanced computational model of the lumbar facet capsular ligament by incorporating residual strain and joint pressurization strain, factors neglected in prior models. Further, the model can predict strain and stress distribution across the ligament under various spinal motions, highlighting the influence of the ligament's attachment to the bone, internal synovial fluid pressurization, and distribution of collagen fiber alignment on the overall mechanical response of the ligament. Joint space inflation was found to influence the total observed stress and strain fields, both at rest and during motion. A significant portion of the ligament was found to be in tension, even in the absence of external load. Additionally, the model's ability to account for residual strain offers a more realistic portrayal of the collagen fibers and elastin matrix's role in ligament mechanics. We conclude that (1) computational models of the lumbar facet capsular ligament should not assume that the ligament is unloaded when the joint is in its neutral position, and (2) the ligament is nearly always in tension, which may be important in terms of its long-term growth and remodeling.

References

1.
Rubin
,
D. I.
,
2007
, “
Epidemiology and Risk Factors for Spine Pain
,”
Neurol. Clin.
,
25
(
2
), pp.
353
371
.10.1016/j.ncl.2007.01.004
2.
Katz
,
J. N.
,
2006
, “
Lumbar Disc Disorders and Low-Back Pain: Socioeconomic Factors and Consequences
,”
J. Bone Jt. Surg.
,
88
(
suppl_2
), pp.
21
24
.10.2106/JBJS.E.01273
3.
Claeson
,
A. A.
, and
Barocas
,
V. H.
,
2017
, “
Planar Biaxial Extension of the Lumbar Facet Capsular Ligament Reveals Significant in-Plane Shear Forces
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
127
136
.10.1016/j.jmbbm.2016.08.019
4.
Gacek
,
E.
,
Bermel
,
E. A.
,
Ellingson
,
A. M.
, and
Barocas
,
V. H.
,
2021
, “
Through-Thickness Regional Variation in the Mechanical Characteristics of the Lumbar Facet Capsular Ligament
,”
Biomech. Model. Mechanobiol.
,
20
(
4
), pp.
1445
1457
.10.1007/s10237-021-01455-3
5.
Bermel
,
E. A.
,
Barocas
,
V. H.
, and
Ellingson
,
A. M.
,
2018
, “
The Role of the Facet Capsular Ligament in Providing Spinal Stability
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
13
), pp.
712
721
.10.1080/10255842.2018.1514392
6.
Zhang
,
S.
,
Zarei
,
V.
,
Winkelstein
,
B. A.
, and
Barocas
,
V. H.
,
2018
, “
Multiscale Mechanics of the Cervical Facet Capsular Ligament, With Particular Emphasis on Anomalous Fiber Realignment Prior to Tissue Failure
,”
Biomech. Model. Mechanobiol.
,
17
(
1
), pp.
133
145
.10.1007/s10237-017-0949-8
7.
Zarei
,
V.
,
Dhume
,
R. Y.
,
Ellingson
,
A. M.
, and
Barocas
,
V. H.
,
2018
, “
Multiscale Modelling of the Human Lumbar Facet Capsular Ligament: Analysing Spinal Motion From the Joint to the Neurons
,”
J. R. Soc. Interface
,
15
(
148
), p.
20180550
.10.1098/rsif.2018.0550
8.
Zarei
,
V.
,
Liu
,
C. J.
,
Claeson
,
A. A.
,
Akkin
,
T.
, and
Barocas
,
V. H.
,
2017
, “
Image-Based Multiscale Mechanical Modeling Shows the Importance of Structural Heterogeneity in the Human Lumbar Facet Capsular Ligament
,”
Biomech. Model. Mechanobiol.
,
16
(
4
), pp.
1425
1438
.10.1007/s10237-017-0896-4
9.
Gacek
,
E.
,
Mahutga
,
R. R.
, and
Barocas
,
V. H.
,
2023
, “
Hybrid Discrete-Continuum Multiscale Model of Tissue Growth and Remodeling
,”
Acta Biomater.
,
163
, pp.
7
24
.10.1016/j.actbio.2022.09.040
10.
Hortin
,
M. S.
, and
Bowden
,
A. E.
,
2016
, “
Quantitative Comparison of Ligament Formulation and Pre-Strain in Finite Element Analysis of the Human Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
14
), pp.
1505
1518
.10.1080/10255842.2016.1159677
11.
Robertson
,
D. J.
,
Von Forell
,
G. A.
,
Alsup
,
J.
, and
Bowden
,
A. E.
,
2013
, “
Thoracolumbar Spinal Ligaments Exhibit Negative and Transverse Pre-Strain
,”
J. Mech. Behav. Biomed. Mater.
,
23
, pp.
44
52
.10.1016/j.jmbbm.2013.04.004
12.
Newman
,
H. R.
,
DeLucca
,
J. F.
,
Peloquin
,
J. M.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2021
, “
Multiaxial Validation of a Finite Element Model of the Intervertebral Disc With Multigenerational Fibers to Establish Residual Strain
,”
JOR Spine
,
4
(
2
), p.
e1145
.10.1002/jsp2.1145
13.
Derrouiche
,
A.
,
Feki
,
F.
,
Zairi
,
F.
,
Taktak
,
R.
,
Moulart
,
M.
,
Qu
,
Z.
,
Ismail
,
J.
,
Charfi
,
S.
,
Haddar
,
N.
, and
Zairi
,
F.
,
2020
, “
How Pre-Strain Affects the Chemo-Torsional Response of the Intervertebral Disc
,”
Clin. Biomech.
,
76
, p.
105020
.10.1016/j.clinbiomech.2020.105020
14.
Claeson
,
A. A.
, and
Barocas
,
V. H.
,
2017
, “
Computer Simulation of Lumbar Flexion Shows Shear of the Facet Capsular Ligament
,”
Spine J.
,
17
(
1
), pp.
109
119
.10.1016/j.spinee.2016.08.014
15.
Ellingson
,
A. M.
,
Shaw
,
M. N.
,
Giambini
,
H.
, and
An
,
K. N.
,
2016
, “
Comparative Role of Disc Degeneration and Ligament Failure on Functional Mechanics of the Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
9
), pp.
1009
1018
.10.1080/10255842.2015.1088524
16.
Ban
,
E.
,
Zhang
,
S.
,
Zarei
,
V.
,
Barocas
,
V. H.
,
Winkelstein
,
B. A.
, and
Picu
,
C. R.
,
2017
, “
Collagen Organization in Facet Capsular Ligaments Varies With Spinal Region and With Ligament Deformation
,”
ASME J. Biomech. Eng.
,
139
(
7
), p. 071009.10.1115/1.4036019
17.
Gacek
,
E.
,
Ellingson
,
A. M.
, and
Barocas
,
V. H.
,
2022
, “
In Situ Lumbar Facet Capsular Ligament Strains Due to Joint Pressure and Residual Strain
,”
ASME J. Biomech. Eng.
,
144
(
6
), p.
061007
.10.1115/1.4053993
18.
Maas
,
S. A.
,
Rawlins
,
D.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2018
, “
FEBio User Manual v2.8
,” accessed Aug. 15, 2024, https://help.febio.org/FEBio/FEBio_um_2_8/
19.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p. 011005.10.1115/1.4005694
20.
Flynn
,
B. P.
,
Bhole
,
A. P.
,
Saeidi
,
N.
,
Liles
,
M.
,
DiMarzio
,
C. A.
, and
Ruberti
,
J. W.
,
2010
, “
Mechanical Strain Stabilizes Reconstituted Collagen Fibrils Against Enzymatic Degradation by Mammalian Collagenase Matrix Metalloproteinase 8 (MMP-8)
,”
PLoS One
,
5
(
8
), p.
e12337
.10.1371/journal.pone.0012337
21.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization
,”
Trans. R. Soc. A
,
367
(
1902
), pp.
3445
3475
.10.1098/rsta.2009.0091
22.
Nouh
,
M. R.
,
2012
, “
Spinal Fusion-Hardware Construct: Basic Concepts and Imaging Review
,”
World J. Radiol.
,
4
(
5
), p.
193
.10.4329/wjr.v4.i5.193
23.
Schendel
,
M. J.
,
Wood
,
K. B.
,
Buttermann
,
G. R.
,
Lewis
,
J. J.
, and
Ogilvie
,
J. W.
,
1993
, “
Experimental Measurement of Ligament Force, Facet Force, and Segment Motion in the Human Lumbar Spine
,”
J. Biomech.
,
26
(
4–5
), pp.
427
438
.10.1016/0021-9290(93)90006-Z
24.
Ianuzzi
,
A.
,
Little
,
J. S.
,
Chiu
,
J. B.
,
Baitner
,
A.
,
Kawchuk
,
G.
, and
Khalsa
,
P. S.
,
2004
, “
Human Lumbar Facet Joint Capsule Strains: I. During Physiological Motions
,”
Spine J.
,
4
(
2
), pp.
141
152
.10.1016/j.spinee.2003.07.008
25.
Singh
,
S.
, and
Winkelstein
,
B. A.
,
2023
, “
Characterization of the L4/L5 Rat Facet Capsular Ligament Macromechanical and Microstructural Responses to Tensile Failure Loading
,”
J. Biomech.
,
157
, p.
111742
.10.1016/j.jbiomech.2023.111742
26.
Little
,
J. S.
, and
Khalsa
,
P. S.
,
2005
, “
Material Properties of the Human Lumbar Facet Joint Capsule
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
15
24
.10.1115/1.1835348
27.
Comellas
,
E.
,
Gasser
,
T. C.
,
Bellomo
,
F. J.
, and
Oller
,
S.
,
2016
, “
A Homeostatic-Driven Turnover Remodelling Constitutive Model for Healing in Soft Tissues
,”
J. R. Soc. Interface
,
13
(
116
), p.
20151081
.10.1098/rsif.2015.1081
You do not currently have access to this content.