Abstract

In this paper, a novel method is proposed for the determination of the optimal subject-specific placement of knee implants based on predictive dynamic simulations of human movement following total knee arthroplasty (TKA). Two knee implant models are introduced. The first model is a comprehensive 12-degree-of-freedom (DoF) representation that incorporates volumetric contact between femoral and tibial implants, as well as patellofemoral contact. The second model employs a single-degree-of-freedom equivalent kinematic (SEK) approach for the knee joint. A cosimulation framework is proposed to leverage both knee models in our simulations. The knee model is calibrated and validated using patient-specific data, including knee kinematics and ground reaction forces. Additionally, quantitative indices are introduced to evaluate the optimality of implant positioning based on three criteria: balancing medial and lateral load distributions, ligament balancing, and varus/valgus alignment. The knee implant placement is optimized by minimizing the deviation of the indices from their user-defined desired values during predicted sit-to-stand motion. The method presented in this paper has the potential to enhance the results of knee arthroplasty and serve as a valuable instrument for surgeons when planning and performing this procedure.

References

1.
Nashi
,
N.
,
Hong
,
C. C.
, and
Krishna
,
L.
,
2015
, “
Residual Knee Pain and Functional Outcome Following Total Knee Arthroplasty in Osteoarthritic Patients
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
23
(
6
), pp.
1841
1847
.10.1007/s00167-014-2910-z
2.
Gunaratne
,
R.
,
Pratt
,
D. N.
,
Banda
,
J.
,
Fick
,
D. P.
,
Khan
,
R. J.
, and
Robertson
,
B. W.
,
2017
, “
Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature
,”
J. Arthroplasty
,
32
(
12
), pp.
3854
3860
.10.1016/j.arth.2017.07.021
3.
Sikorski
,
J.
,
2008
, “
Alignment in Total Knee Replacement
,”
J. Bone Jt. Surg., Br. Vol.
,
90-B
(
9
), pp.
1121
1127
.10.1302/0301-620X.90B9.20793
4.
Thompson
,
J. A.
,
Hast
,
M. W.
,
Granger
,
J. F.
,
Piazza
,
S. J.
, and
Siston
,
R. A.
,
2011
, “
Biomechanical Effects of Total Knee Arthroplasty Component Malrotation: A Computational Simulation
,”
J. Orthop. Res.
,
29
(
7
), pp.
969
975
.10.1002/jor.21344
5.
Kayani
,
B.
,
Konan
,
S.
,
Ayuob
,
A.
,
Onochie
,
E.
,
Al-Jabri
,
T.
, and
Haddad
,
F. S.
,
2019
, “
Robotic Technology in Total Knee Arthroplasty: A Systematic Review
,”
EFORT Open Rev.
,
4
(
10
), pp.
611
617
.10.1302/2058-5241.4.190022
6.
Hampp
,
E. L.
,
Chughtai
,
M.
,
Scholl
,
L. Y.
,
Sodhi
,
N.
,
Bhowmik-Stoker
,
M.
,
Jacofsky
,
D. J.
, and
Mont
,
M. A.
,
2019
, “
Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared With Manual Techniques
,”
J. Knee Surg.
,
32
(
3
), pp.
239
250
.10.1055/s-0038-1641729
7.
Walker
,
L. C.
,
Clement
,
N. D.
,
Ghosh
,
K. M.
, and
Deehan
,
D. J.
,
2018
, “
What Is a Balanced Knee Replacement?
,”
EFORT Open Rev.
,
3
(
12
), pp.
614
619
.10.1302/2058-5241.3.180008
8.
Victor
,
J.
,
2017
, “
Optimising Position and Stability in Total Knee Arthroplasty
,”
EFORT Open Rev.
,
2
(
5
), pp.
215
220
.10.1302/2058-5241.2.170001
9.
Winnock de Grave
,
P.
,
Luyckx
,
T.
,
Claeys
,
K.
,
Tampere
,
T.
,
Kellens
,
J.
,
Müller
,
J.
, and
Gunst
,
P.
,
2020
, “
Higher Satisfaction After Total Knee Arthroplasty Using Restricted Inverse Kinematic Alignment Compared to Adjusted Mechanical Alignment
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
30
(
2
), pp.
488
499
.10.1007/s00167-020-06165-4
10.
Cherian
,
J. J.
,
Kapadia
,
B. H.
,
Banerjee
,
S.
,
Jauregui
,
J. J.
,
Issa
,
K.
, and
Mont
,
M. A.
,
2014
, “
Mechanical, Anatomical, and Kinematic Axis in TKA: Concepts and Practical Applications
,”
Curr. Rev. Musculoskeletal Med.
,
7
(
2
), pp.
89
95
.10.1007/s12178-014-9218-y
11.
Insall
,
J. N.
,
Binazzi
,
R.
,
Soudry
,
M.
, and
Mestriner
,
L. A.
,
1985
, “
Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
192
, pp.
13
22
.
12.
Bellemans
,
J.
,
Colyn
,
W.
,
Vandenneucker
,
H.
, and
Victor
,
J.
,
2012
, “
The Chitranjan Ranawat Award: Is Neutral Mechanical Alignment Normal for All Patients?: The Concept of Constitutional Varus
,”
Clin. Orthop. Relat. Res.
,
470
(
1
), pp.
45
53
.10.1007/s11999-011-1936-5
13.
Rivière
,
C.
,
Villet
,
L.
,
Jeremic
,
D.
, and
Vendittoli
,
P.-A.
,
2021
, “
What You Need to Know About Kinematic Alignment for Total Knee Arthroplasty
,”
Orthop. Traumatol.: Surg. Res.
,
107
(
1
), p.
102773
.10.1016/j.otsr.2020.102773
14.
Shatrov
,
J.
,
Batailler
,
C.
,
Sappey-Marinier
,
E.
,
Gunst
,
S.
,
Servien
,
E.
, and
Lustig
,
S.
,
2022
, “
Kinematic Alignment Fails to Achieve Balancing in 50% of Varus Knees and Resects More Bone Compared to Functional Alignment
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
30
(
9
), pp.
2991
2999
.10.1007/s00167-022-07073-5
15.
Clark
,
G.
,
Steer
,
R.
, and
Wood
,
D.
,
2022
, “
Functional Alignment Achieves a More Balanced Total Knee Arthroplasty Than Either Mechanical Alignment or Kinematic Alignment Prior to Soft Tissue Releases
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
31
(
4
), pp.
1420
1426
.
16.
Dossett
,
H.
,
Estrada
,
N.
,
Swartz
,
G.
,
LeFevre
,
G.
, and
Kwasman
,
B.
,
2014
, “
A Randomised Controlled Trial of Kinematically and Mechanically Aligned Total Knee Replacements: Two-Year Clinical Results
,”
Bone Jt. J.
,
96-B
(
7
), pp.
907
913
.10.1302/0301-620X.96B7.32812
17.
Hirschmann
,
M. T.
,
Hess
,
S.
,
Behrend
,
H.
,
Amsler
,
F.
,
Leclercq
,
V.
, and
Moser
,
L. B.
,
2019
, “
Phenotyping of Hip–Knee–Ankle Angle in Young Non-Osteoarthritic Knees Provides Better Understanding of Native Alignment Variability
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
27
(
5
), pp.
1378
1384
.10.1007/s00167-019-05507-1
18.
Ro
,
J.
,
Ro
,
D. H.
,
Kang
,
Y.
,
Han
,
H.-S.
, and
Shin
,
C. S.
,
2022
, “
Biomechanical Effect of Coronal Alignment and Ligament Laxity in Total Knee Arthroplasty: A Simulation Study
,”
Front. Bioeng. Biotechnol.
,
10
, p.
452
.10.3389/fbioe.2022.851495
19.
Okamoto
,
S.
,
Mizu-Uchi
,
H.
,
Okazaki
,
K.
,
Hamai
,
S.
,
Nakahara
,
H.
, and
Iwamoto
,
Y.
,
2015
, “
Effect of Tibial Posterior Slope on Knee Kinematics, Quadriceps Force, and Patellofemoral Contact Force After Posterior-Stabilized Total Knee Arthroplasty
,”
J. Arthroplasty
,
30
(
8
), pp.
1439
1443
.10.1016/j.arth.2015.02.042
20.
Watanabe
,
M.
,
Kuriyama
,
S.
,
Nakamura
,
S.
,
Tanaka
,
Y.
,
Nishitani
,
K.
,
Furu
,
M.
,
Ito
,
H.
, and
Matsuda
,
S.
,
2017
, “
Varus Femoral and Tibial Coronal Alignments Result in Different Kinematics and Kinetics After Total Knee Arthroplasty
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
25
(
11
), pp.
3459
3466
.10.1007/s00167-017-4570-2
21.
Sekiguchi
,
K.
,
Nakamura
,
S.
,
Kuriyama
,
S.
,
Nishitani
,
K.
,
Ito
,
H.
,
Tanaka
,
Y.
,
Watanabe
,
M.
, and
Matsuda
,
S.
,
2019
, “
Effect of Tibial Component Alignment on Knee Kinematics and Ligament Tension in Medial Unicompartmental Knee Arthroplasty
,”
Bone Jt. Res.
,
8
(
3
), pp.
126
135
.10.1302/2046-3758.83.BJR-2018-0208.R2
22.
Innocenti
,
B.
,
Pianigiani
,
S.
,
Ramundo
,
G.
, and
Thienpont
,
E.
,
2016
, “
Biomechanical Effects of Different Varus and Valgus Alignments in Medial Unicompartmental Knee Arthroplasty
,”
J. Arthroplasty
,
31
(
12
), pp.
2685
2691
.10.1016/j.arth.2016.07.006
23.
Inoue
,
S.
,
Akagi
,
M.
,
Asada
,
S.
,
Mori
,
S.
,
Zaima
,
H.
, and
Hashida
,
M.
,
2016
, “
The Valgus Inclination of the Tibial Component Increases the Risk of Medial Tibial Condylar Fractures in Unicompartmental Knee Arthroplasty
,”
J. Arthroplasty
,
31
(
9
), pp.
2025
2030
.10.1016/j.arth.2016.02.043
24.
Small
,
S. R.
,
Berend
,
M. E.
,
Rogge
,
R. D.
,
Archer
,
D. B.
,
Kingman
,
A. L.
, and
Ritter
,
M. A.
,
2013
, “
Tibial Loading After UKA: Evaluation of Tibial Slope, Resection Depth, Medial Shift and Component Rotation
,”
J. Arthroplasty
,
28
(
9
), pp.
179
183
.10.1016/j.arth.2013.01.004
25.
Tzanetis
,
P.
,
Fluit
,
R.
,
de Souza
,
K.
,
Robertson
,
S.
,
Koopman
,
B.
, and
Verdonschot
,
N.
,
2023
, “
Pre-Planning the Surgical Target for Optimal Implant Positioning in Robotic-Assisted Total Knee Arthroplasty
,”
Bioengineering
,
10
(
5
), p.
543
.10.3390/bioengineering10050543
26.
Bartsoen
,
L.
,
Faes
,
M. G.
,
Wirix-Speetjens
,
R.
,
Moens
,
D.
,
Jonkers
,
I.
, and
Vander Sloten
,
J.
,
2022
, “
Probabilistic Planning for Ligament-Balanced TKA Identification of Critical Ligament Properties
,”
Front. Bioeng. Biotechnol.
,
10
, p.
930724
.10.3389/fbioe.2022.930724
27.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
28.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
,
C. W.
, Jr.
,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
(
2
), pp.
299
304
.10.1016/j.jbiomech.2004.02.011
29.
Danaei
,
B.
, and
McPhee
,
J.
,
2022
, “
Model-Based Acetabular Cup Orientation Optimization Based on Minimizing the Risk of Edge-Loading and Implant Impingement Following Total Hip Arthroplasty
,”
ASME J. Biomech. Eng.
,
144
(
11
), p.
111008
.10.1115/1.4054866
30.
Keller
,
K.
, and
Engelhardt
,
M.
,
2019
, “
Strength and Muscle Mass Loss With Aging Process. Age and Strength Loss
,”
Muscles, Ligaments Tendons J.
,
3
(
4
), p.
346
.10.32098/mltj.04.2013.17
31.
Schmitz
,
A.
, and
Piovesan
,
D.
,
2016
, “
Development of an Open-Source, Discrete Element Knee Model
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2056
2067
.10.1109/TBME.2016.2585926
32.
Sugita
,
T.
, and
Amis
,
A. A.
,
2001
, “
Anatomic and Biomechanical Study of the Lateral Collateral and Popliteofibular Ligaments
,”
Am. J. Sports Med.
,
29
(
4
), pp.
466
472
.10.1177/03635465010290041501
33.
Liu
,
F.
,
Yue
,
B.
,
Gadikota
,
H. R.
,
Kozanek
,
M.
,
Liu
,
W.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2010
, “
Morphology of the Medial Collateral Ligament of the Knee
,”
J. Orthop. Surg. Res.
,
5
(
1
), pp.
1
8
.10.1186/1749-799X-5-69
34.
Edwards
,
A.
,
Bull
,
A. M.
, and
Amis
,
A. A.
,
2007
, “
The Attachments of the Fiber Bundles of the Posterior Cruciate Ligament: An Anatomic Study
,”
Arthroscopy: J. Arthroscopic Relat. Surg.
,
23
(
3
), pp.
284
290
.10.1016/j.arthro.2006.11.005
35.
Davies
,
H.
,
Unwin
,
A.
, and
Aichroth
,
P.
,
2004
, “
The Posterolateral Corner of the Knee: Anatomy, Biomechanics and Management of Injuries
,”
Injury
,
35
(
1
), pp.
68
75
.10.1016/S0020-1383(03)00094-9
36.
Blankevoort
,
L.
,
Kuiper
,
J.
,
Huiskes
,
R.
, and
Grootenboer
,
H.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
37.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.10.1016/0021-9290(86)90019-9
38.
Gonthier
,
Y.
,
2007
, “
Contact Dynamics Modelling for Robotic Task Simulation
,”
Ph.D. thesis
,
University of Waterloo, Waterloo
,
ON, Canada
.https://dl.acm.org/doi/10.5555/1571044
39.
Brown
,
P.
,
2017
, “
Contact Modelling for Forward Dynamics of Human Motion
,”
Master's thesis
,
University of Waterloo
,
Waterloo, ON, Canada
.https://core.ac.uk/download/pdf/144150072.pdf
40.
Stylianou
,
A. P.
,
Guess
,
T. M.
, and
Kia
,
M.
,
2013
, “
Multibody Muscle Driven Model of an Instrumented Prosthetic Knee During Squat and Toe Rise Motions
,”
ASME J. Biomech. Eng.
,
135
(
4
), p.
041008
.10.1115/1.4023982
41.
Halloran
,
J. P.
,
Easley
,
S. K.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
813
818
.10.1115/1.1992522
42.
Hall
,
A.
,
Schmitke
,
C.
, and
McPhee
,
J.
,
2014
, “
Symbolic Formulation of a Path-Following Joint for Multibody Dynamics
,”
ASME
Paper No. DETC2014-35082.10.1115/DETC2014-35082
43.
Beynnon
,
B.
,
Yu
,
J.
,
Huston
,
D.
,
Fleming
,
B.
,
Johnson
,
R.
,
Haugh
,
L.
, and
Pope
,
M. H.
,
1996
, “
A Sagittal Plane Model of the Knee and Cruciate Ligaments With Application of a Sensitivity Analysis
,”
ASME J. Biomech. Eng.
,
118
(
2
), pp.
227
239
.10.1115/1.2795965
44.
Tully
,
E. A.
,
Fotoohabadi
,
M. R.
, and
Galea
,
M. P.
,
2005
, “
Sagittal Spine and Lower Limb Movement During Sit-to-Stand in Healthy Young Subjects
,”
Gait Posture
,
22
(
4
), pp.
338
345
.10.1016/j.gaitpost.2004.11.007
45.
Merican
,
A. M.
,
Sanghavi
,
S.
,
Iranpour
,
F.
, and
Amis
,
A. A.
,
2009
, “
The Structural Properties of the Lateral Retinaculum and Capsular Complex of the Knee
,”
J. Biomech.
,
42
(
14
), pp.
2323
2329
.10.1016/j.jbiomech.2009.06.049
46.
Mountney
,
J.
,
Senavongse
,
W.
,
Amis
,
A.
, and
Thomas
,
N.
,
2005
, “
Tensile Strength of the Medial Patellofemoral Ligament Before and After Repair or Reconstruction
,”
J. Bone Jt. Surg., Br. Vol.
,
87-B
(
1
), pp.
36
40
.10.1302/0301-620X.87B1.14924
47.
Piazza
,
S. J.
, and
Delp
,
S. L.
,
2001
, “
Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
599
606
.10.1115/1.1406950
48.
Bersini
,
S.
,
Sansone
,
V.
, and
Frigo
,
C. A.
,
2016
, “
A Dynamic Multibody Model of the Physiological Knee to Predict Internal Loads During Movement in Gravitational Field
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
5
), pp.
571
579
.10.1080/10255842.2015.1051972
49.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.10.1115/1.4029258
50.
Sheth
,
N. P.
,
Husain
,
A.
, and
Nelson
,
C. L.
,
2017
, “
Surgical Techniques for Total Knee Arthroplasty: Measured Resection, Gap Balancing, and Hybrid
,”
JAAOS-J. Am. Acad. Orthop. Surg.
,
25
(
7
), pp.
499
508
.10.5435/JAAOS-D-14-00320
51.
Choong
,
P. F.
,
Dowsey
,
M. M.
, and
Stoney
,
J. D.
,
2009
, “
Does Accurate Anatomical Alignment Result in Better Function and Quality of Life? Comparing Conventional and Computer-Assisted Total Knee Arthroplasty
,”
J. Arthroplasty
,
24
(
4
), pp.
560
569
.10.1016/j.arth.2008.02.018
52.
Verstraete
,
M. A.
,
Meere
,
P. A.
,
Salvadore
,
G.
,
Victor
,
J.
, and
Walker
,
P. S.
,
2017
, “
Contact Forces in the Tibiofemoral Joint From Soft Tissue Tensions: Implications to Soft Tissue Balancing in Total Knee Arthroplasty
,”
J. Biomech.
,
58
, pp.
195
202
.10.1016/j.jbiomech.2017.05.008
53.
Babazadeh
,
S.
,
Stoney
,
J. D.
,
Lim
,
K.
, and
Choong
,
P. F.
,
2009
, “
The Relevance of Ligament Balancing in Total Knee Arthroplasty: How Important Is It? A Systematic Review of the Literature
,”
Orthop. Rev.
,
1
(
2
), p.
e26
.10.4081/or.2009.e26
54.
Hsu
,
R. W.
,
Himeno
,
S.
,
Coventry
,
M. B.
, and
Chao
,
E. Y.
,
1990
, “
Normal Axial Alignment of the Lower Extremity and Load-Bearing Distribution at the Knee
,”
Clin. Orthop. Relat. Res. (1976–2007)
,
255
, pp.
215
227
.https://pubmed.ncbi.nlm.nih.gov/2347155/
55.
Varadarajan
,
K. M.
,
Moynihan
,
A. L.
,
D'Lima
,
D.
,
Colwell
,
C. W.
, and
Li
,
G.
,
2008
, “
In Vivo Contact Kinematics and Contact Forces of the Knee After Total Knee Arthroplasty During Dynamic Weight-Bearing Activities
,”
J. Biomech.
,
41
(
10
), pp.
2159
2168
.10.1016/j.jbiomech.2008.04.021
56.
Rivière
,
C.
,
Iranpour
,
F.
,
Auvinet
,
E.
,
Howell
,
S.
,
Vendittoli
,
P.-A.
,
Cobb
,
J.
, and
Parratte
,
S.
,
2017
, “
Alignment Options for Total Knee Arthroplasty: A Systematic Review
,”
Orthop. Traumatol.: Surg. Res.
,
103
(
7
), pp.
1047
1056
.10.1016/j.otsr.2017.07.010
57.
Mihalko
,
W. M.
,
Saleh
,
K. J.
,
Krackow
,
K. A.
, and
Whiteside
,
L. A.
,
2009
, “
Soft-Tissue Balancing During Total Knee Arthroplasty in the Varus Knee
,”
JAAOS-J. Am. Acad. Orthop. Surg.
,
17
(
12
), pp.
766
774
.10.5435/00124635-200912000-00005
58.
Daines
,
B. K.
, and
Dennis
,
D. A.
,
2014
, “
Gap Balancing vs. Measured Resection Technique in Total Knee Arthroplasty
,”
Clin. Orthop. Surg.
,
6
(
1
), pp.
1
8
.10.4055/cios.2014.6.1.1
59.
Martin
,
J. W.
, and
Whiteside
,
L. A.
,
1990
, “
The Influence of Joint Line Position on Knee Stability After Condylar Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
259
, pp.
146
156
.https://pubmed.ncbi.nlm.nih.gov/2208849/
60.
Te Molder
,
M. E.
,
Wymenga
,
A. B.
, and
Heesterbeek
,
P. J.
,
2019
, “
Mid-Flexion Laxity in the Asymptomatic Native Knee Is Predominantly Present on the Lateral Side
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
27
(
11
), pp.
3614
3625
.10.1007/s00167-019-05474-7
61.
Nowakowski
,
A. M.
,
Majewski
,
M.
,
Müller-Gerbl
,
M.
, and
Valderrabano
,
V.
,
2011
, “
Development of a Force-Determining Tensor to Measure Physiologic Knee Ligament Gaps Without Bone Resection Using a Total Knee Arthroplasty Approach
,”
J. Orthop. Sci.
,
16
(
1
), pp.
56
63
.10.1007/s00776-010-0015-1
62.
Rivière
,
C.
,
Lazic
,
S.
,
Boughton
,
O.
,
Wiart
,
Y.
,
Vïllet
,
L.
, and
Cobb
,
J.
,
2018
, “
Current Concepts for Aligning Knee Implants: Patient-Specific or Systematic?
,”
EFORT Open Rev.
,
3
(
1
), pp.
1
6
.10.1302/2058-5241.3.170021
63.
Howell
,
S. M.
,
Hull
,
M. L.
, and
Mahfouz
,
M.
,
2012
, “
Kinematic Alignment in Total Knee Arthroplasty
,”
Insall and Scott Surgery of the Knee
,
Elsevier
,
Philadelphia, PA
, pp.
1255
1268
.10.1302/2058-5241.5.200010
You do not currently have access to this content.