Abstract
In this paper, a novel method is proposed for the determination of the optimal subject-specific placement of knee implants based on predictive dynamic simulations of human movement following total knee arthroplasty (TKA). Two knee implant models are introduced. The first model is a comprehensive 12-degree-of-freedom (DoF) representation that incorporates volumetric contact between femoral and tibial implants, as well as patellofemoral contact. The second model employs a single-degree-of-freedom equivalent kinematic (SEK) approach for the knee joint. A cosimulation framework is proposed to leverage both knee models in our simulations. The knee model is calibrated and validated using patient-specific data, including knee kinematics and ground reaction forces. Additionally, quantitative indices are introduced to evaluate the optimality of implant positioning based on three criteria: balancing medial and lateral load distributions, ligament balancing, and varus/valgus alignment. The knee implant placement is optimized by minimizing the deviation of the indices from their user-defined desired values during predicted sit-to-stand motion. The method presented in this paper has the potential to enhance the results of knee arthroplasty and serve as a valuable instrument for surgeons when planning and performing this procedure.