Abstract

During vaginal delivery, the delivery requires the fetal head to mold to accommodate the geometric constraints of the birth canal. Excessive molding can produce brain injuries and long-term sequelae. Understanding the loading of the fetal brain during the second stage of labor (fully dilated cervix, active pushing, and expulsion of fetus) could thus help predict the safety of the newborn during vaginal delivery. To this end, this study proposes a finite element model of the fetal head and maternal canal environment that is capable of predicting the stresses experienced by the fetal brain at the onset of the second phase of labor. Both fetal and maternal models were adapted from existing studies to represent the geometry of full-term pregnancy. Two fetal positions were compared: left-occiput-anterior and left-occiput-posterior. The results demonstrate that left-occiput-anterior position reduces the maternal tissue deformation, at the cost of higher stress in the fetal brain. In both cases, stress is concentrated underneath the sutures, though the location varies depending on the presentation. In summary, this study provides a patient-specific simulation platform for the study of vaginal delivery and its effect on both the fetal brain and maternal anatomy. Finally, it is suggested that such an approach has the potential to be used by obstetricians to support their decision-making processes through the simulation of various delivery scenarios.

References

1.
Warren
,
R.
, and
Arulkumaran
,
S.
,
2009
, “
Best Practice in Labour and Delivery
,”
Pelvic and Fetal Cranial Anatomy and Mechanism of Labour
, 1st ed.,
Cambridge University Press
,
Cambridge
, UK, Chap. I, pp.
1
13
.
2.
Lindgren
,
L.
,
1960
, “
The Causes of Fetal Head Moulding in Labour
,”
Acta. Obstet. Gynecol. Scand.
,
39
(
1
), pp.
46
62
.10.3109/00016346009157836
3.
Baxter
,
J.
,
1946
, “
Moulding of the Fetal Head
,”
J. Obstet. Gynaecol. Brit. Emp.
,
53
(
3
), pp.
212
218
.10.1111/j.1471-0528.1946.tb03903.x
4.
Rabelo
,
N. N.
,
Matushita
,
H.
, and
Cardeal
,
D. D.
,
2017
, “
Traumatic Brain Lesions in Newborns
,”
Arq. Neuro-Psiquiatr.
,
75
(
3
), pp.
180
188
.10.1590/0004-282x20170016
5.
Ami
,
O.
,
Maran
,
J. C.
,
Gabor
,
P.
,
Whitacre
,
E. B.
,
Musset
,
D.
,
Dubray
,
C.
,
Mage
,
G.
, and
Boyer
,
L.
,
2019
, “
Three-Dimensional Magnetic Resonance Imaging of Fetal Head Moulding and Brain Shape Changes During the Second Stage of Labour
,”
PLoS One
,
14
(
5
), p.
e0215721
.10.1371/journal.pone.0215721
6.
Cunningham
,
F. G.
,
Leveno
,
K. J.
,
Bloom
,
S. L.
,
Spong
,
C. Y.
,
Dashe
,
J. S.
,
Hoffman
,
B. L.
,
Casey
,
B. M.
, and
Sheffield
,
J. S.
, eds.,
2014
,
Williams Obstetrics
, 24th ed.,
McGraw-Hill Education/Medical
,
New York
.
7.
Baskett
,
T. F.
,
Allen
,
V. M.
,
O'Connell
,
C. M.
, and
Allen
,
A. C.
,
2006
, “
Fetal Trauma in Term Pregnancy
,”
Am. J. Obstet. Gynecol.
,
197
(
5
), p.
499.e1
.10.1016/j.ajog.2007.03.065
8.
Sorbe
,
B.
, and
Dahlgren
,
S.
,
1983
, “
Some Important Factors in the Moulding of the Fetal Head During Vaginal Delivery - A Photographic Study
,”
Int. J. Gynaecol. Obstet.
,
21
(
3
), pp.
205
212
.10.1016/0020-7292(83)90081-4
9.
Chaturvedi
,
A.
,
Chaturvedi
,
A.
,
Stanescu
,
A. L.
,
Blickman
,
J. G.
, and
Meyers
,
S. P.
,
2018
, “
Mechanical Birth-Related Trauma to the Neonate: An Imaging Perspective
,”
Insights Imaging
,
9
(
1
), pp.
103
118
.10.1007/s13244-017-0586-x
10.
DeCherney
,
A. H.
,
Nathan
,
L.
,
Laufer
,
N.
, and
Roman
,
A. S.
,
2019
,
Current Diagnosis & Treatment: Obstetrics & Gynecology
, 12th ed.,
McGraw-Hill Education
,
New York
.
11.
Hanretty
,
K. P.
,
Ramsden
,
I.
, and
Callander
,
R.
,
2010
,
Obstetrics Illustrated
, 7th ed.,
Churchill Livingstone Wordmark
,
Edinburgh, Scotland
.
12.
Akmal
,
S.
,
Tsoi
,
E.
,
Howard
,
R.
,
Osei
,
E.
, and
Nicolaides
,
K. H.
,
2004
, “
Investigation of Occiput Posterior Delivery by Intrapartum Sonography
,”
Ultrasound Obstet. Gynecol.
,
24
(
4
), pp.
425
428
.10.1002/uog.1064
13.
Senecal
,
J.
,
Xiong
,
X.
, and
Fraser
,
W. D.
,
2005
, “
Effect of Fetal Position on Second-Stage Duration and Labor Outcome
,”
Obstet. Gynecol.
,
105
(
4
), pp.
763
772
.10.1097/01.AOG.0000154889.47063.84
14.
Cheng
,
Y. W.
,
Shaffer
,
B. L.
, and
Caughey
,
A. B.
,
2006
, “
The Association Between Persistent Occiput Posterior Position and Neonatal Outcomes
,”
Obstet. Gynecol.
,
107
(
4
), pp.
837
844
.10.1097/01.AOG.0000206217.07883.a2
15.
Foggin
,
H. H.
,
Albert
,
A. Y.
,
Minielly
,
N. C.
,
Lisonkova
,
S.
,
Koenig
,
N. A.
,
Jacobs
,
E. N.
, and
Cundiff
,
G. W.
,
2022
, “
Labor and Delivery Outcomes by Delivery Method in Term Deliveries in Occiput Posterior Position: A Population-Based Retrospective Cohort Study
,”
AJOG Global Rep.
,
2
(
4
), p.
100080
.10.1016/j.xagr.2022.100080
16.
McPherson
,
G. K.
, and
Kriewall
,
T. J.
,
1980
, “
Fetal Head Moulding: An Investigation Utilising a Finite Element Model of the Fetal Parietal Bone
,”
J. Biomech.
,
13
(
1
), pp.
17
26
.10.1016/0021-9290(80)90004-4
17.
Lapeer
,
R. J.
, and
Prager
,
R. W.
,
2001
, “
Fetal Head Moulding: Finite Element Analysis of a Fetal Skull Subjected to Uterine Pressures During the First Stage of Labour
,”
J. Biomech.
,
34
(
9
), pp.
1125
1133
.10.1016/S0021-9290(01)00070-7
18.
Pu
,
F.
,
Xu
,
L.
,
Li
,
D.
,
Li
,
S.
,
Sun
,
L.
,
Wang
,
L.
, and
Fan
,
Y.
,
2011
, “
Effect of Different Labor Forces on Fetal Skull Moulding
,”
Med. Eng. Phys.
,
33
(
5
), pp.
620
625
.10.1016/j.medengphy.2010.12.018
19.
Moura
,
R.
,
Borges
,
M.
,
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Kimmich
,
N.
,
Mascarenhas
,
T.
, and
Natal
,
R. M.
,
2022
, “
A Biomechanical Study of the Birth Position: A Natural Struggle Between Mother and Fetus
,”
Biomech. Model. Mechanobiol.
,
21
(
3
), pp.
937
951
.10.1007/s10237-022-01569-2
20.
Borges
,
M.
,
Moura
,
R.
,
Oliveira
,
D.
,
Parente
,
M.
,
Mascarenhas
,
T.
, and
Natal
,
R.
,
2021
, “
Effect of the Birthing Position on Its Evolution From a Biomechanical Point of View
,”
Comput. Methods Programs Biomed.
,
200
), p.
105921
.10.1016/j.cmpb.2020.105921
21.
Moura
,
R.
,
Borges
,
M.
,
Pouca
,
M. C. P. V.
,
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Kimmich
,
N.
,
Mascarenhas
,
T.
, and
Natal
,
R. M.
,
2020
, “
A Numerical Study on Fetal Head Molding During Labor
,”
Int. J. Numer. Methods Biomed Eng.
,
37
(
1
), p.
e3411
.10.1002/cnm.3411
22.
Heyborne
,
K. D.
,
2017
, “
A Systematic Review of Intrapartum Fetal Head Compression: What is the Impact on the Fetal Brain?
,”
AJP Rep.
,
7
(
2
), pp.
e79
e85
.10.1055/s-0037-1602658
23.
Khalid
,
G. A.
,
Prabhu
,
R. K.
,
Arthurs
,
O.
, and
Jones
,
M. D.
,
2019
, “
A Coupled Physical-Computational Methodology for the Investigation of Short Fall Related Infant Head Impact Injury
,”
Forensic Sci. Int.
,
300
), pp.
170
186
.10.1016/j.forsciint.2019.04.034
24.
Khalid
,
G. A.
,
2018
, “
A Coupled Physical-Computational Methodology for the Investigation of Short Fall Related Infant Head Impact
,”
Ph.D. thesis
,
Cardiff University, Cardiff, UK
.https://orca.cardiff.ac.uk/id/eprint/117559/
25.
World Health Organization
,
2006
, “
WHO Child Growth Standards, Head Circumference
,” World Health Organization, Geneva, Switzerland, accessed Jan. 29, 2024, https://www.who.int/tools/child-growth-standards/standards/head-circumference-for-age
26.
Kiserud
,
T.
,
Piaggio
,
G.
,
Carroli
,
G.
,
Widmer
,
M.
,
Carvalho
,
J.
,
Neerup Jensen
,
L.
,
Giordano
,
D.
, et al.,
2017
, “
The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight
,”
PLoS Med.
,
14
(
1
), p.
e1002220
.10.1371/journal.pmed.1002220
27.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
MeshLab: An Open-Source Mesh Processing Tool
,”
Eurographics Italian Chapter Conference
,
V.
Scarano
,
R. D.
Chiara
, and
U.
Erra
, eds.,
The Eurographics Association
,
Eindhoven, The Netherlands
.
28.
Cignoni
,
P.
,
Rocchini
,
C.
, and
Scopigno
,
R.
,
1998
, “
Metro: Measuring Error on Simplified Surfaces
,”
Computer Graphics Forum
, Vol.
17
,
Blackwell Publishers
,
Hoboken, NJ
, pp.
167
174
.
29.
Westervelt
,
A. R.
,
Fernandez
,
M.
,
House
,
M.
,
Vink
,
J.
,
Nhan-Chang
,
C.-L.
,
Wapner
,
R.
, and
Myers
,
K. M.
,
2011
, “
A Parameterised Ultrasound-Based Finite Element Analysis of the Mechanical Environment of Pregnancy
,”
ASME J. Biomed. Eng.
,
139
(
5
), p.
051004
.10.1115/1.4036259
30.
Bryant-Greenwood
,
G. D.
,
1998
, “
The Extracellular Matrix of the Human Fetal Membranes: Structure and Function
,”
Placenta
,
19
(
1
), pp.
1
11
.10.1016/S0143-4004(98)90092-3
31.
Baah-Dwomoh
,
A.
,
McGuire
,
J.
,
Tan
,
T.
, and
De Vita
,
R.
,
2016
, “
Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p.
060801
.10.1115/1.4034442
32.
Luo
,
J.
,
Betschart
,
C.
,
Ashton-Miller
,
J. A.
, and
DeLancey
,
J. O. L.
,
2016
, “
Quantitative Analyses of Variability in Normal Vaginal Shape and Dimension on MR Images
,”
Int. Urogynecol. J.
,
27
(
7
), pp.
1087
1095
.10.1007/s00192-016-2949-0
33.
Barnhart
,
K. T.
,
Izquierdo
,
A.
,
Pretorius
,
E. S.
,
Shera
,
D. M.
,
Shabbout
,
M.
, and
Shaunik
,
A.
,
2006
, “
Baseline Dimensions of the Human Vagina
,”
Hum. Reprod.
,
21
(
6
), pp.
1618
1622
.10.1093/humrep/del022
34.
Zhou
,
S. H.
,
McCarthy
,
I. D.
,
McGregor
,
A. H.
,
Coombs
,
R. R. H.
, and
Hughes
,
S. P. F.
,
2000
, “
Geometrical Dimensions of the Lower Lumbar Vertebrae – Analysis of Data From Digitised CT Images
,”
Eur. Spine J.
,
9
(
3
), pp.
242
248
.10.1007/s005860000140
35.
Coats
,
B.
, and
Margulies
,
S. S.
,
2006
, “
Material Properties of Human Infant Skull and Suture at High Rates
,”
J. Neurotrauma
,
23
(
8
), pp.
1222
1232
.10.1089/neu.2006.23.1222
36.
Li
,
X.
,
Sandler
,
H.
, and
Kleiven
,
S.
,
2017
, “
The Importance of Nonlinear Tissue Modelling in Finite Element Simulations of Infant Head Impacts
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
823
840
.10.1007/s10237-016-0855-5
37.
McPherson
,
G. K.
, and
Kriewall
,
T. J.
,
1980
, “
The Elastic Modulus of Fetal Cranial Bone: A First Step Towards an Understanding of the Biomechanics of Fetal Head Moulding
,”
J. Biomech.
,
13
(
1
), pp.
9
16
.10.1016/0021-9290(80)90003-2
38.
Kriewall
,
T. J.
,
1982
, “
Structural, Mechanical, and Material Properties of Fetal Cranial Bone
,”
Am. J. Obstet. Gynecol.
,
143
(
6
), pp.
707
714
.10.1016/0002-9378(82)90119-3
39.
Kriewall
,
T. J.
, McPherson, G. K., and
Tsai
,
A. C.
,
1981
, “
Bending Properties and Ash Content of Fetal Cranial Bone
,”
J. Biomech.
,
14
(
2
), pp.
73
79
.10.1016/0021-9290(81)90166-4
40.
Budday
,
S.
,
Ovaert
,
T. C.
,
Holzapfel
,
G. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2020
, “
Fifty Shades of Brain: A Review on the Mechanical Testing and Modelling of Brain Tissue
,”
Arch. Comput. Methods Eng.
,
27
(
4
), pp.
1187
1230
.10.1007/s11831-019-09352-w
41.
Chatelin
,
S.
,
Constantinesco
,
A.
, and
Willinger
,
R.
,
2010
, “
Fifty Years of Brain Tissue Mechanical Testing: From In Vitro to In Vivo Investigations
,”
Biorheology
,
47
(
5–6
), pp.
255
276
.10.3233/BIR-2010-0576
42.
Thibault
,
K. L.
, and
Margulies
,
S. S.
,
1998
, “
Age-Dependent Material Properties of the Porcine Cerebrum: Effect on Paediatric Inertial Head Injury Criteria
,”
J. Biomech.
,
31
(
12
), pp.
1119
1126
.10.1016/S0021-9290(98)00122-5
43.
Prange
,
M. T.
, and
Margulies
,
S. S.
,
2002
, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
244
252
.10.1115/1.1449907
44.
Yeung
,
J.
,
Jugé
,
L.
,
Hatt
,
A.
, and
Bilston
,
L. E.
,
2019
, “
Paediatric Brain Tissue Properties Measured With Magnetic Resonance Elastography
,”
Biomech. Model. Mechanobiol.
,
18
(
5
), pp.
1497
1505
.10.1007/s10237-019-01157-x
45.
Roth
,
S.
,
Raul
,
J.
, and
Willinger
,
R.
,
2010
, “
Finite Element Modelling of Paediatric Head Impact: Global Validation Against Experimental Data
,”
Comput. Methods Programs Biomed.
,
99
(
1
), pp.
25
33
.10.1016/j.cmpb.2009.10.004
46.
Li
,
Z.
,
Hu
,
J.
,
Reed
,
M. P.
,
Rupp
,
J. D.
,
Hoff
,
C. N.
,
Zhang
,
J.
, and
Cheng
,
B.
,
2011
, “
Development, Validation, and Application of a Parametric Pediatric Head Finite Element Model for Impact Simulations
,”
Ann. Biomed. Eng.
,
39
(
12
), pp.
2984
2997
.10.1007/s10439-011-0409-z
47.
Buttin
,
R.
,
Zara
,
F.
,
Shariat
,
B.
,
Redarce
,
T.
, and
Grangé
,
G.
,
2013
, “
Biomechanical Simulation of the Fetal Descent Without Imposed Theoretical Trajectory
,”
Comput. Methods Programs Biomed.
,
111
(
2
), pp.
389
401
.10.1016/j.cmpb.2013.04.005
48.
Manoogian
,
S. J.
,
Bisplinghoff
,
J. A.
,
Kemper
,
A. R.
, and
Duma
,
S. M.
,
2012
, “
Dynamic Material Properties of the Pregnant Human Uterus
,”
J. Biomech.
,
45
(
9
), pp.
1724
1727
.10.1016/j.jbiomech.2012.04.001
49.
Ramezani
,
M.
,
Klima
,
S.
,
de la Herverie
,
P. L. C.
,
Campo
,
J.
,
Joncour
,
J.-B. L.
,
Rouquette
,
C.
,
Scholze
,
M.
, and
Hammer
,
N.
,
2019
, “
In Silico Pelvis and Sacroiliac Joint Motion: Refining a Model of the Human Osteoligamentous Pelvis for Assessing Physiological Load Deformation Using an Inverted Validation Approach
,”
BioMed Res. Int.
,
2019
), pp.
1
12
.10.1155/2019/3973170
50.
Dakin
,
G. J.
,
Arbelaez
,
R. A.
,
Molz
,
F. J.
, IV
,
Alonso
,
J. E.
,
Mann
,
K. A.
, and
Eberhardt
,
A. W.
,
2001
, “
Elastic and Viscoelastic Properties of the Human Pubic Symphysis Joint: Effects of Lateral Impact Loading
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
218
226
.10.1115/1.1372321
51.
Loyd
,
A. M.
,
2011
, “
Studies of the Human Head From Neonate to Adult: An Inertial, Geometrical, and Structural Analysis With Comparisons to the ATD Head
,”
Ph.D. thesis
,
Duke University
, Durham, NC.https://dukespace.lib.duke.edu/items/2b4be12c-7d22-4dd8-bd06-31814dd5ffa7
52.
Nishijima
,
K.
,
Yoneda
,
M.
,
Hirai
,
T.
,
Takakuwa
,
K.
, and
Enomoto
,
T.
,
2019
, “
Biology of the Vernix Caseosa: A Review
,”
J. Obstet. Gynaecol. Res.
,
45
(
11
), pp.
2145
2149
.10.1111/jog.14103
53.
Silva
,
M. E. T.
,
Oliveira
,
D. A.
,
Roza
,
T. H.
,
Ao
,
S. B.
,
Parente
,
M. P. L.
,
Mascarenhas
,
T.
, and
Jorge
,
R. M. N.
,
2015
, “
Study on the Influence of the Fetus Head Molding on the Biomechanical Behavior of the Pelvic Floor Muscles, During Vaginal Delivery
,”
J. Biomech.
,
48
(
9
), pp.
1600
1605
.10.1016/j.jbiomech.2015.02.032
54.
Pouca
,
M. C. P. V.
,
Ferreira
,
J. P. S.
,
Oliveira
,
D. A.
,
Parente
,
M. P. L.
,
Mascarenhas
,
M. T.
, and
Jorge
,
R. M. N.
,
2019
, “
Simulation of the Uterine Contractions and Foetus Expulsion Using a Chemo-Mechanical Constitutive Model
,”
Biomech. Model. Mechanobiol.
,
18
(
3
), pp.
829
843
.10.1007/s10237-019-01117-5
55.
Routzong
,
M. R.
,
Moalli
,
P. A.
,
Maiti
,
S.
,
Vita
,
R. D.
, and
Abramowitch
,
S. D.
,
2019
, “
Novel Simulations to Determine the Impact of Superficial Perineal Structures on Vaginal Delivery
,”
Interface Focus
,
9
(
4
), p.
20190011
.10.1098/rsfs.2019.0011
56.
Lapeer
,
R.
,
Gerikhanov
,
Z.
,
Sadulaev
,
S.
,
Audinis
,
V.
,
Rowland
,
R.
,
Crozier
,
K.
, and
Morris
,
E.
,
2019
, “
A Computer-Based Simulation of Childbirth Using the Partial Dirichlet-Neumann Contact Method With Total Lagrangian Explicit Dynamics on the GPU
,”
Biomech. Model. Mechanobiol.
,
18
(
3
), pp.
681
700
.10.1007/s10237-018-01109-x
57.
Lien
,
K.-C.
,
Mooney
,
B.
,
DeLancey
,
J. O. L.
, and
Ashton-Miller
,
J. A.
,
2004
, “
Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth
,”
Obstet. Gynecol.
,
103
(
1
), pp.
31
40
.10.1097/01.AOG.0000109207.22354.65
58.
rr
,
P.
J
.,
Khouw
,
V.
M
.,
Chervenak
,
F.
A
.,
Grunebaum
,
A.
,
Jacquemyn
,
Y.
, and
Nijhuis
,
J. G.
,
2017
,
Obstetrics Interventions
,
Cambridge University Press
,
Cambridge, UK
, pp.
1
16
.10.1017/9781316632567
59.
Ashton-Miller
,
J.
, and
Delancey
,
J.
,
2009
, “
On the Biomechanics of Vaginal Birth and Common Sequelae
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
163
176
.10.1146/annurev-bioeng-061008-124823
You do not currently have access to this content.