Abstract

Understanding the biomechanical impact of injuries and reconstruction of the anterior cruciate ligament (ACL) is vital for improving surgical treatments that restore normal knee function. The purpose of this study was to develop a technique that enables parametric analysis of the effect of the ACL reconstruction (ACLR) in cadaver knees, by replacing its contributions with that of a specimen-specific virtual ACLR that can be enabled, disabled, or modified. Twelve ACLR reconstructed knees were mounted onto a motion simulator. In situ ACLR graft forces were measured using superposition, and these data were used to design specimen-specific virtual ACLRs that would yield the same ligament force-elongation behaviors. Tests were then repeated using the virtual ACLR in place of the real ACLR and following that in ACL deficient knee by disabling the virtual ACLR. In comparison to the ACL deficient state, the virtual ACLRs were able to restore knee stability to the same extent as real ACLRs. The average differences between the anterior tibial translation (ATT) of the virtual ACLR versus the real ACLR were +1.6 ± 0.9 mm (p = 0.4), +2.1 ± 0.4 mm (p = 0.4), and +1.0 ± 0.9 mm (p = 0.4) during Anterior drawer, Lachman and Pivot-shift tests, respectively, which is small in comparison to the full ATT range of motion (ROM) of these knees. Therefore, we conclude that a virtual ACLR can be used in place of real ACLR during biomechanical testing of cadaveric knees. This capability opens the door for future studies that can leverage parameterization of the ACLR for surgical design optimization.

References

1.
Girgis
,
F. G.
,
Marshall
,
J. L.
, and
Jem
,
A. R. S. A. M.
,
1975
, “
The Cruciate Ligaments of the Knee Joint: Anatomical. Functional and Experimental Analysis
,”
Clin. Orthop. Relat. Res.
,
106
, pp.
216
231
.10.1097/00003086-197501000-00033
2.
Beynnon
,
B. D.
,
Johnson
,
R. J.
,
Abate
,
J. A.
,
Fleming
,
B. C.
, and
Nichols
,
C. E.
,
2005
, “
Treatment of Anterior Cruciate Ligament Injuries, Part I
,”
Am. J. Sports Med.
,
33
(
10
), pp.
1579
1602
.10.1177/0363546505279913
3.
Marder
,
R. A.
,
Raskind
,
J. R.
, and
Carroll
,
M.
,
1991
, “
Prospective Evaluation of Arthroscopically Assisted Anterior Cruciate Ligament Reconstruction: Patellar Tendon Versus Semitendinosus and Gracilis Tendons
,”
Am. J. Sports Med.
,
19
(
5
), pp.
478
484
.10.1177/036354659101900510
4.
Engebretsen
,
L.
,
Wijdicks
,
C. A.
,
Anderson
,
C. J.
,
Westerhaus
,
B.
, and
LaPrade
,
R. F.
,
2012
, “
Evaluation of a Simulated Pivot Shift Test: A Biomechanical Study
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
20
(
4
), pp.
698
702
.10.1007/s00167-011-1744-1
5.
Spencer
,
L.
,
Burkhart
,
T. A.
,
Tran
,
M. N.
,
Rezansoff
,
A. J.
,
Deo
,
S.
,
Caterine
,
S.
, and
Getgood
,
A. M.
,
2015
, “
Biomechanical Analysis of Simulated Clinical Testing and Reconstruction of the Anterolateral Ligament of the Knee
,”
Am. J. Sports Med.
,
43
(
9
), pp.
2189
2197
.10.1177/0363546515589166
6.
Chambat
,
P.
,
Guier
,
C.
,
Sonnery-Cottet
,
B.
,
Fayard
,
J. M.
, and
Thaunat
,
M.
,
2013
, “
The Evolution of ACL Reconstruction Over the Last Fifty Years
,”
Int. Orthop.
,
37
(
2
), pp.
181
186
.10.1007/s00264-012-1759-3
7.
Siebold
,
R.
,
Branch
,
T. P.
,
Freedberg
,
H. I.
, and
Jacobs
,
C. A.
,
2011
, “
A Matched Pairs Comparison of Single-Versus Double-Bundle Anterior Cruciate Ligament Reconstructions, Clinical Results and Manual Laxity Testing
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
19
(
S1
), pp.
4
11
.10.1007/s00167-011-1475-3
8.
Trojani
,
C.
,
Beaufils
,
P.
,
Burdin
,
G.
,
Bussière
,
C.
,
Chassaing
,
V.
,
Djian
,
P.
,
Dubrana
,
F.
, et al.,
2012
, “
Revision ACL Reconstruction: Influence of a Lateral Tenodesis
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
20
(
8
), pp.
1565
1570
.10.1007/s00167-011-1765-9
9.
Zaffagnini
,
S.
,
Marcacci
,
M.
,
Presti
,
M.
,
Lo
,
Giordano
,
G.
,
Iacono
,
F.
, and
Neri
,
M. P.
,
2006
, “
Prospective and Randomized Evaluation of ACL Reconstruction With Three Techniques: A Clinical and Radiographic Evaluation at 5 Years Follow-Up
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
14
(
11
), pp.
1060
1069
.10.1007/s00167-006-0130-x
10.
Tashman
,
S.
,
Kolowich
,
P.
,
Collon
,
D.
,
Anderson
,
K.
, and
Anderst
,
W.
,
2007
, “
Dynamic Function of the ACL-Reconstructed Knee During Running
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
66
73
.10.1097/BLO.0b013e31802bab3e
11.
Paterno
,
M. V.
,
Rauh
,
M. J.
,
Schmitt
,
L. C.
,
Ford
,
K. R.
, and
Hewett
,
T. E.
,
2012
, “
Incidence of Contralateral and Ipsilateral Anterior Cruciate Ligament (ACL) Injury After Primary ACL Reconstruction and Return to Sport
,”
Clin. J. Sport Med.
,
22
(
2
), pp.
116
121
.10.1097/JSM.0b013e318246ef9e
12.
Ali
,
A. A.
,
Harris
,
M. D.
,
Shalhoub
,
S.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2017
, “
Combined Measurement and Modeling of Specimen-Specific Knee Mechanics for Healthy and ACL-Deficient Conditions
,”
J. Biomech.
,
57
, pp.
117
124
.10.1016/j.jbiomech.2017.04.008
13.
Fulkerson
,
J. P.
,
2002
, “
Diagnosis and Treatment of Patients With Patellofemoral Pain
,”
Am. J. Sports Med.
,
30
(
3
), pp.
447
456
.10.1177/03635465020300032501
14.
Nebelung
,
W.
, and
Wuschech
,
H.
,
2005
, “
Thirty-Five Years of Follow-Up of Anterior Cruciate Ligament—Deficient Knees in High-Level Athletes
,”
Arthroscopy: J. Arthroscopic Relat. Surg.
,
21
(
6
), pp.
696
702
.10.1016/j.arthro.2005.03.010
15.
Abebe
,
E. S.
,
Utturkar
,
G. M.
,
Taylor
,
D. C.
,
Spritzer
,
C. E.
,
Kim
,
J. P.
,
Moorman
,
C. T.
, III
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2011
, “
The Effects of Femoral Graft Placement on In Vivo Knee Kinematics After Anterior Cruciate Ligament Reconstruction
,”
J. Biomech.
,
44
(
5
), pp.
924
929
.10.1016/j.jbiomech.2010.11.028
16.
Hoshino
,
Y.
,
Fu
,
F. H.
,
Irrgang
,
J. J.
, and
Tashman
,
S.
,
2013
, “
Can Joint Contact Dynamics Be Restored by Anterior Cruciate Ligament Reconstruction?
,”
Clin. Orthop. Relat. Res.
,
471
(
9
), pp.
2924
2931
.10.1007/s11999-012-2761-1
17.
Tashman
,
S.
, and
Araki
,
D.
,
2013
, “
Effects of Anterior Cruciate Ligament Reconstruction on In Vivo, Dynamic Knee Function
,”
Clin. Sports Med.
,
32
(
1
), pp.
47
59
.10.1016/j.csm.2012.08.006
18.
Wright
,
R. W.
,
Huston
,
L. J.
,
Haas
,
A. K.
,
Spindler
,
K. P.
,
Nwosu
,
S. K.
,
Allen
,
C. R.
,
Anderson
,
A. F.
, et al.,
2014
, “
Effect of Graft Choice on the Outcome of Revision Anterior Cruciate Ligament Reconstruction in the Multicenter ACL Revision Study (MARS) Cohort
,”
Am. J. Sports Med.
,
42
(
10
), pp.
2301
2310
.10.1177/0363546514549005
19.
Lansdown
,
D. A.
,
Pedoia
,
V.
,
Zaid
,
M.
,
Amano
,
K.
,
Souza
,
R. B.
,
Li
,
X.
, and
Ma
,
C. B.
,
2017
, “
Variations in Knee Kinematics After ACL Injury and After Reconstruction Are Correlated With Bone Shape Differences
,”
Clin. Orthop. Relat. Res.
,
475
(
10
), pp.
2427
2435
.10.1007/s11999-017-5368-8
20.
Inderhaug
,
E.
,
Stephen
,
J. M.
,
Williams
,
A.
, and
Amis
,
A. A.
,
2017
, “
Biomechanical Comparison of Anterolateral Procedures Combined With Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
45
(
2
), pp.
347
354
.10.1177/0363546516681555
21.
Kittl
,
C.
,
El-Daou
,
H.
,
Athwal
,
K. K.
,
Gupte
,
C. M.
,
Weiler
,
A.
,
Williams
,
A.
, and
Amis
,
A. A.
,
2016
, “
The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee
,”
Am. J. Sports Med.
,
44
(
2
), pp.
345
354
.10.1177/0363546515614312
22.
Nitri
,
M.
,
Rasmussen
,
M. T.
,
Williams
,
B. T.
,
Moulton
,
S. G.
,
Cruz
,
R. S.
,
Dornan
,
G. J.
,
Goldsmith
,
M. T.
, and
LaPrade
,
R. F.
,
2016
, “
An In Vitro Robotic Assessment of the Anterolateral Ligament, Part 2: Anterolateral Ligament Reconstruction Combined With Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
44
(
3
), pp.
593
601
.10.1177/0363546515620183
23.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
,
2002
, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
713
720
.10.1114/1.1484219
24.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
,
V.
,
Thomas
,
M.
, and
Woo
,
S. L.-Y.
,
2004
, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation
,”
J. Biomech.
,
37
(
3
), pp.
383
390
.10.1016/S0021-9290(03)00261-6
25.
Andriacchi
,
T. P.
,
Mikosz
,
R. P.
,
Hampton
,
S. J.
, and
Galante
,
J. O.
,
1983
, “
Model Studies of the Stiffness Characteristics of the Human Knee Joint
,”
J. Biomech.
,
16
(
1
), pp.
23
29
.10.1016/0021-9290(83)90043-X
26.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.10.1016/0021-9290(95)00149-2
27.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S.-Y.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
657
662
.10.1115/1.2800871
28.
Sharifi Kia
,
D.
, and
Willing
,
R.
,
2018
, “
Applying a Hybrid Experimental-Computational Technique to Study Elbow Joint Ligamentous Stabilizers
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061012
.10.1115/1.4039674
29.
Vakili
,
S.
,
2022
, “
Development of a Combined Experimental-Computational Framework to Study Human Knee Biomechanics
,” Doctoral thesis,
Western Libraries
,
London, ON, Canada
.https://ir.lib.uwo.ca/etd/9056/
30.
Vakili
,
S.
,
Lanting
,
B.
,
Getgood
,
A.
, and
Willing
,
R.
,
2023
, “
Development of Multibundle Virtual Ligaments to Simulate Knee Mechanics After Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
145
(
9
), p.
091003
.10.1115/1.4062421
31.
Willing
,
R.
, and
Walker
,
P. S.
,
2018
, “
Measuring the Sensitivity of Total Knee Replacement Kinematics and Laxity to Soft Tissue Imbalances
,”
J. Biomech.
,
77
, pp.
62
68
.10.1016/j.jbiomech.2018.06.019
32.
Sarpong
,
N. O.
,
Sonnenfeld
,
J. J.
,
LiArno
,
S.
,
Rajaravivarma
,
R.
,
Donde
,
S.
,
Sneddon
,
E.
,
Kaverina
,
T.
, et al.,
2020
, “
Virtual Reconstruction of the Posterior Cruciate Ligament for Mechanical Testing of Total Knee Arthroplasty Implants
,”
Knee
,
27
(
1
), pp.
151
156
.10.1016/j.knee.2019.10.023
33.
Vivacqua
,
T.
,
Vakili
,
S.
,
Willing
,
R.
,
Moatshe
,
G.
,
Degen
,
R.
, and
Getgood
,
A. M.
,
2022
, “
Biomechanical Assessment of Knee Laxity After a Novel Posterolateral Corner Reconstruction Technique
,”
Am J. Sports Med.
,
50
(
4
), pp.
962
967
.10.1177/03635465211070553
34.
Willing
,
R. T.
,
Lalone
,
E. A.
,
Shannon
,
H.
,
Johnson
,
J. A.
, and
King
,
G. J. W.
,
2013
, “
Validation of a Finite Element Model of the Human Elbow for Determining Cartilage Contact Mechanics
,”
J. Biomech.
,
46
(
10
), pp.
1767
1771
.10.1016/j.jbiomech.2013.04.001
35.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
Method for Registration of 3-D Shapes
,”
Proc. SPIE
,
1611
, pp.
586
606
.10.1117/12.57955
36.
Yin
,
L.
,
Chen
,
K.
,
Guo
,
L.
,
Cheng
,
L.
,
Wang
,
F.
, and
Yang
,
L.
,
2015
, “
Identifying the Functional Flexion-Extension Axis of the Knee: An in-Vivo Kinematics Study
,”
PLoS One
,
10
(
6
), p.
e0128877
.10.1371/journal.pone.0128877
37.
Sidhu
,
S. P.
,
Moslemian
,
A.
,
Yamomo
,
G.
,
Vakili
,
S.
,
Kelly
,
P.
,
Willing
,
R. T.
, and
Lanting
,
B. A.
,
2020
, “
Lateral Subvastus Lateralis Versus Medial Parapatellar Approach for Total Knee Arthroplasty: A Cadaveric Biomechanical Study
,”
Knee
,
27
(
6
), pp.
1735
1745
.10.1016/j.knee.2020.09.022
38.
Steiner
,
M.
,
2009
, “
Anatomic Single-Bundle ACL Reconstruction
,”
Sports Med. Arthrosc. Rev.
,
17
(
4
), pp.
247
251
.10.1097/JSA.0b013e3181c0ccf8
39.
Triantafyllopoulos
,
I. K.
,
Lampropoulou-Adamidou
,
K.
,
Schizas
,
N. P.
, and
Karadimas
,
E. V.
,
2017
, “
Surgical Treatment of Acute Type V Acromioclavicular Joint Dislocations in Professional Athletes: An Anatomic Ligament Reconstruction With Synthetic Implant Augmentation
,”
J. Shoulder Elbow Surg.
,
26
(
12
), pp.
e369
e375
.10.1016/j.jse.2017.05.032
40.
Noyes
,
F. R.
,
Grood
,
E. S.
,
Cummings
,
J. F.
, and
Wroble
,
R. R.
,
1991
, “
Analysis of the Pivot Shift Phenomenon by Different Examiners
,”
Am. J. Sports Med.
,
19
(
2
), pp.
148
155
.10.1177/036354659101900210
41.
Sakane
,
M.
,
Fox
,
R. J.
,
Glen
,
S. L. W.
,
Livesay
,
A.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
In Situ Forces in the Anterior Cruciate Ligament and Its Bundles in Response to Anterior Tibial Loads
,”
J. Orthop. Res.
,
15
(
2
), pp.
285
293
.10.1002/jor.1100150219
42.
Zaylor
,
W.
,
Stulberg
,
B. N.
, and
Halloran
,
J. P.
,
2019
, “
Use of Distraction Loading to Estimate Subject-Specific Knee Ligament Slack Lengths
,”
J. Biomech.
,
92
, pp.
1
5
.10.1016/j.jbiomech.2019.04.040
43.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
44.
Mommersteeg
,
T. J. A.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G. M.
, and
Kauer
,
J. M. G.
,
1996
, “
Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical-Experimental Approach
,”
J. Biomech.
,
29
(
2
), pp.
151
160
.10.1016/0021-9290(95)00040-2
45.
Bland
,
J. M.
, and
Altman
,
D.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
327
(
8476
), pp.
307
310
.10.1016/S0140-6736(86)90837-8
46.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
47.
Bendjaballah
,
M.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997
, “
Finite Element Analysis of Human Knee Joint in Varus-Valgus
,”
Clin. Biomech.
,
12
(
3
), pp.
139
148
.10.1016/S0268-0033(97)00072-7
48.
Magnussen
,
R. A.
,
Reinke
,
E. K.
,
Huston
,
L. J.
,
Hewett
,
T. E.
,
Spindler
,
K. P.
,
Andrish
,
J. T.
,
Jones
,
M. H.
, et al.,
2016
, “
Effect of High-Grade Preoperative Knee Laxity on Anterior Cruciate Ligament Reconstruction Outcomes
,”
Am. J. Sports Med.
,
44
(
12
), pp.
3077
3082
.10.1177/0363546516656835
49.
Getgood
,
A. M. J.
,
Bryant
,
D. M.
,
Litchfield
,
R.
,
Heard
,
M.
,
McCormack
,
R. G.
,
Rezansoff
,
A.
,
Peterson
,
D.
, et al.,
2020
, “
Lateral Extra-Articular Tenodesis Reduces Failure of Hamstring Tendon Autograft Anterior Cruciate Ligament Reconstruction: 2-Year Outcomes From the STABILITY Study Randomized Clinical Trial
,”
Am. J. Sports Med.
,
48
(
2
), pp.
285
297
.10.1177/0363546519896333
50.
Insall
,
J. N.
,
Dorr
,
L. D.
,
Scott
,
R. D.
, and
Scott
,
W. N.
,
1989
, “
Rationale of the Knee Society Clinical Rating System
,”
Clin. Orthop. Relat. Res.
,
248
(
248
), pp.
13
14
.10.1097/00003086-198911000-00004
51.
Harris
,
M. D.
,
Cyr
,
A. J.
,
Ali
,
A. A.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
, and
Shelburne
,
K. B.
,
2016
, “
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
0810041
.10.1115/1.4033882
52.
Amirouche
,
F.
,
Solitro
,
G. F.
,
Gligor
,
B. Z.
,
Hutchinson
,
M.
, and
Koh
,
J.
,
2023
, “
Investigating the Effect of Autograft Diameter for Quadriceps and Patellar Tendons Use in Anterior Cruciate Ligament Reconstruction: A Biomechanical Analysis Using a Simulated Lachman Test
,”
Front. Surg.
,
10
, p.
1122379
.10.3389/fsurg.2023.1122379
53.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
,
1997
, “
A Poroelastic Model That Predicts Some Phenomenological Responses of Ligaments and Tendons
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
400
405
.10.1115/1.2798285
54.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.10.1016/j.jbiomech.2011.11.052
55.
Kazemi
,
M.
,
Dabiri
,
Y.
, and
Li
,
L.
,
2013
, “
Recent Advances in Computational Mechanics of the Human Knee Joint
,”
Comput. Math. Methods Med.
,
2013
, pp.
1
27
.10.1155/2013/718423
56.
Massey
,
P.
,
Parker
,
D.
,
McClary
,
K.
,
Robinson
,
J.
,
Barton
,
R. S.
, and
Solitro
,
G. F.
,
2020
, “
Biomechanical Comparison of Anterior Cruciate Ligament Repair With Internal Brace Augmentation Versus Anterior Cruciate Ligament Repair Without Augmentation
,”
Clin. Biomech.
,
77
, p.
105065
.10.1016/j.clinbiomech.2020.105065
57.
Massey
,
P. A.
,
Caldwell
,
C.
,
Vauclin
,
C. P.
,
Hoefler
,
A. K.
,
Berken
,
D.
,
Barton
,
R. S.
, and
Solitro
,
G. F.
,
2021
, “
The Ideal Cortical Button Location on the Lateral Femur for Anterior Cruciate Ligament Suspensory Fixation is 30 Mm Proximal to the Lateral Epicondyle
,”
Arthroscopy Sports Med. Rehabil.
,
3
(
5
), pp.
e1255
e1262
.10.1016/j.asmr.2021.03.018
58.
Lorrison
,
J.
, and
Maguire
,
D.
,
2021
, “
Mechanical Properties and Fixation Performance Testing of the JewelACL
,” Paper No. JewelACL-White-Paper-WP-006.https://xiros.co.uk/wp-content/uploads/2015/09/JewelACL-White-Paper-WP-006.pdf
You do not currently have access to this content.